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ABSTRACT 

 

Electric Propulsion Mission Analysis of an Autonomous 

Racing Quadcopter 

by Brayan Ernesto Mendez 

 

The thesis details and analyzes the design of an electric propulsion system for an autonomous 

racing quadcopter application. Results were achieved by open-source hardware and developed 

software for a driven simulation within the Unity3D environment. A simulation that contains the 

sized quadcopter vehicle which is representative of the overall design was also recreated to assist 

in the modeling and development of the analysis. The quadcopter vehicle was successfully 

modeled using theoretical and analytical methods and compared to the provided performance 

load test data. Performance characteristics such as static thrust, torque, and current estimates 

from the analytical modeling approach were shown to be favorable for tuning the flight 

controller within the Unity3D simulation environment.  
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NOMENCLATURE 

a  =    blade section 2-D lift-curve slope 

A =    rotor disk area 

c  =    blade chord line 

CL =    coefficient of lift 

CD =    coefficient of drag 

CP =    power coefficient 

CT =    thrust coefficient 

CQ =    torque coefficient 

D =    drag 

DP =    diameter of the propeller 

dr =    radial increment  

Fx  =    sectional aerodynamic force component parallel to disk plane 

Fz =    sectional aerodynamic force component normal to disk plane 

I0 =    no load current 

J =    advance ratio 

Kt =    torque gain 

Kv       =    voltage gain 

L =    lift 

Qm       =    torque 

r  =    rotor radius 

R =    resistance 

T =    thrust vector 

U =    free stream velocity 

UT =    in-plane velocity 

UP =    out of plane velocity 

V =    voltage 

v∞  =    freestream velocity 

vi  =    induced velocity 

θ =    pitch angle 

α =    effective angle of attack 

ф =    inflow angle 

ν =    induced inflow 

σ’ =    local solidity  

ρ =    density of the air 

α =    axial induction factor 

φ  =    local inflow angle 

ፀ.75 =    collective pitch angle at 0.75% radius 

λ =    rotor inflow ratio 

ω =    rotor rotational speed 
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1 Introduction 

1.1 Motivation 

Autonomous technology is a newly emerging field within aerospace vehicles, such as 

quadcopters. This technology possesses the ability to control these unmanned aerial vehicles 

(UAVs) through an onboard computer where specific object detection algorithms are computed 

and sent to an onboard flight controller to maneuver the quadcopter in six-degree-of-freedom 

(DOF) space. In a racing application, these computations are performed at extraordinary speeds 

of up to 32 TeraOPS using state-of-the-art hardware such as the Nvidia Jetson AGX Xavier, 

which is a type of graphical processing unit (GPU), or supercomputer. Not only does this 

hardware need to operate at high speeds, but so does the physical quadcopter itself during 

autonomous flights. Essentially, once real-time calculations are computed and sent to the flight 

controller, the software sends pulse width modulation (PWM) signals to the electronic speed 

controllers (ESCs) which modulate the current that is being sent to the motor. The varied current 

controls the speed of the motor and propeller combination which ultimately creates a force vector 

perpendicular to the propeller plane. Since a quadcopter has four motors, the vehicle requires a 

set of four electronic speed controllers to modulate the current for each motor and propeller 

combination. Nonetheless, an increase in the motor current input results in an increase of the 

propeller thrust force which also increases the velocity of the physical drone during flight. Figure 

1.1 illustrates the general powertrain system architecture for a quadrotor vehicle. 

 

Figure 1.1. Basic powertrain system architecture for a quadcopter UAV [1]. 

It is important to note that this electric powertrain is illustrated for only one arm of a 

quadcopter vehicle. Sized correctly, these vehicles can have high thrust to weight ratios but with 

a tradeoff to low flight times. Moreover, human pilots have demonstrated the high 

maneuverability of these quadcopter UAVs and the ability to complete dynamically complicated 

environments, such as racing circuits, at astonishing speeds. In contrast to human-piloted racing 

drones, autonomous racing quadcopters are far trailing the aspect of piloted performance in the 

context of robustness, versatility, and speed [2].  

The 2019 Lockheed Martin AI Drone Racing Innovation Challenge, hosted by the Drone 

Racing League (DRL), was a competition focused mainly on artificial intelligence. A fully 

autonomous drone, programmed by MAVLab, won with the fastest time of 12 seconds in the 
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first part of the competition where 14.6  miles per hour was the highest speed measured 

throughout the course. The second part of this competition for the winning team was to race a 

human pilot on the same course. However, the human pilot outperformed the autonomous 

technology with an overall speed of 24.7 miles per hour and a course completion time of 6.9 

seconds which was 4.6 seconds faster than the autonomous racing drone [3]. Despite the loss to a 

human pilot, the scores of other teams are summarized in Table 1.1 to illustrate the performance 

of the autonomous technology. 

 

Table 1.1. Summary of team results in the 2019 AI Drone Racing Innovation Challenge. 

Rank Team Best Heat Time (s) 

1 MAVLab Finish 00:12 

2 UZH Robotics  Finish 00:15 

3 Team USRG @ Kaist Gate 2 00:14 

4 RTB - Warsaw Mimotaurs Gate 1 00:07 

5 KEF Robotics Gate 1 00:08 

9 Formula Drone DNF ~ 

 

Similar to a piloted racing drone, autonomous racing quadcopters test the physical limits 

in the context of course complexity and speed to make progress in state-of-the-art technology 

[2]. This progress allows autonomous racing technology to advance into the human performance 

domain. Most quadcopter vehicles discussed in the literature concentrate efforts on powertrain 

sizing and propeller design. Also, autonomous racing quadcopter design has not been analyzed in 

the literature to increase the performance of the flight characteristics that have been proposed in 

this section. Therefore, the main objectives of this project are to analyze a racing quadcopter 

design to increase performance in speed and provide system monitoring on the electric 

powertrain throughout the execution of the course. 

1.2 Literature Review 

1.2.1 Propulsion Design Modeling 

A typical performance evaluation for quadcopters consists of propulsion system modeling 

for various flight stages and measuring performance indices such as maximum-throttle flight and 

propellers, respectively [4]. A simulated quadcopter is defined by modeling each component of 
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the electric propulsion system, such as the battery, ESC, motor, and propeller, at different stages 

of the mission. These stages include hovering flight, forward flight, and maximum thrust flight. 

Problem formulation in [4] includes estimating system efficiency, battery current, ESC input 

current, ESC input voltage, and the motor speed corresponding to the known variables in the 

maximum throttle setting. In addition, forward flight modes are analyzed by estimating 

maximum forward flight speed and the maximum pitch angle corresponding to the known 

variables [4]. The modeling procedure for this study is shown in Figure 1.2. 

 

Figure 1.2. Procedure for modeling input-to-output relationship for UAV [4]. 

Verification of the method effectiveness was performed by means of experimental testing 

to measure different parameters such as throttle duty cycle and ESC input current. The method 

used for system evaluation required part specifications provided by component manufacturers 

[4]. The advantages of this electric propulsion system evaluation method are dominated by the 

steady state behavior of different flight modes and the energy conversions throughout the 

mission [4]. It is important to note that for every unmanned aerial platform the propulsion 

subsystem is the main element.  

Identification of the propulsion system, or system identification, is another method used 

to describe the dynamical model. Simplifications in common modeling approaches have a 

significant effect on the flight controller design by overlooking critical dynamics [5]. In addition, 

a block-oriented, nonlinear model is chosen for simulation because aerodynamic and propeller 

load conditions are nonlinear throughout the modeling procedure [5]. Figure 1.3 illustrates the 

final electric propulsion model that consists of a multiple input- multiple output (MIMO) system 

with two inputs and two outputs. 
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Figure 1.3. MIMO system model of the electric propulsion system [5]. 

However, this procedure is heavily dependent on experimental testing and experimental 

data, but the model obtained is a complete depiction of the electric propulsion system [5]. This 

includes the electronic speed controller, motor and propeller combination, current consumption 

for each component, and the thrust force vector that makes the system dynamic. One main flight 

characteristic that can be estimated from this procedure is range. Range estimates are necessary 

to ensure adequate power is available for return flights throughout the mission [5].  

Furthermore, to optimize the propulsion system, modeling is first done using an 

equivalent circuit as shown in Figure 1.4 to represent the four main elements which are the 

battery, ESC, motor, and propeller [6]. Essentially, the authors propose a straightforward option 

in optimizing a propulsion system with a given set of mission requirements. This is done by 

decoupling and reducing the system into multiple sets of subsystems, or sub-problems. Similar to 

the previous two methods [4] and [5], the sub-problems are expressed as modeling equations that 

can be obtained from the equivalent circuit.  

 

Figure 1.4. Equivalent circuit to model each subsystem [6]. 



5 

 

Unlike permanent magnet synchronous motors, brushless direct-current motors use block 

commutated, trapezoidal signals to drive the system [7]. The motor equivalent circuit in Figure 

1.4 can also be described as a linked star connection since the motor requires electric control of 

three different phases from the electronic speed controller [7]. In a 3-phase circuit connection, 

current passes through two of the leads at all times. Torque ripples are common with brushless 

direct current motors when motor position is not synchronized to the electrical pattern of the 

signals. However, to have minimal discrepancies hall sensors are often used, but most small 

application motors do not come equipped with them [7]. Nonetheless, converted drive signals 

from the induced back electromagnetic force (BEMF) is another method in measuring and 

minimizing the torque ripples. In addition, the electronic speed controller measures the BEMF to 

also measure the current speed of the motor and propeller combination [8]. Therefore, the BEMF 

is strictly associated with the torque measurements in a brushless direct current motor 

application. 

1.2.2 Aerodynamic Propeller Performance 

Propeller performance is a critical evaluation parameter suitable for efficient 

characterization and analysis of the electric propulsion system. A common difficulty in propeller 

performance studies is approximating the induced velocities that are produced by the motor and 

propeller combinations at various speeds that are experienced throughout the mission. Modeling 

equations that provide an evaluation of torque and thrust characteristics are used to determine 

requirements for the quadcopter motor system and to choose proper geometry for the propellers 

[9]. Due to the comprehensive approach in estimating a level of accuracy that is sufficient in the 

quadcopter design methodology, blade element momentum theory (BEMT) was used by the 

authors in [9] to estimate such requirements. From BEMT, a relationship between the force 

vector that is perpendicular to the propeller plane and the induced velocity produced at the 

propeller is established [9]. Figure 1.5 illustrates the perpendicular force vector and the induced 

velocity in the rotating propeller system. 

 

Figure 1.5. Control volume containing the resultant force vector from BEMT [9]. 
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In the illustration above, T is denoted as the thrust vector, v∞ is the freestream velocity, vi 

is the induced velocity, and dr is the radial increment of the propeller. Common assumptions 

made throughout this modeling procedure consists of having the loading driven by the 2-D airfoil 

characteristics and having the flow occur in independent streamlines [10]. However, a 

disadvantage of using BEMT is that it heavily relies on observational data that is not readily 

available [10]. In addition, other simplifications include inviscid fluid properties and assuming a 

stationary environment which makes the procedure efficient but less accurate [11]. The main 

objective from the study done by the authors in [11] was to compare simulation results between 

BEMT and two higher fidelity computational fluid dynamic (CFD) models, such as actuator line 

and blade resolved method. Similarities occur between each method of wind fields extracted 

from an empty domain at the propeller plane, but differences occur at the propeller tip and root 

[11]. In the context of integral quantities, such as torque and thrust, the standard deviation in 

simulation results for BEMT is overestimated when compared to the blade resolved method and 

actuator line method [11]. The authors of this study conclude that similarities in the standard 

deviation between the two higher fidelity models and the BEMT model can be achieved with an 

added correction of wind fields in the BEMT model. Nonetheless, the produced thrust and torque 

can be formulated as described in Equations 1.10 and 1.11, respectively. 

 

 
𝑑𝑇 =  𝜎′𝜋𝜌

𝑣∞
2 (1 + 𝛼)2

sin2 𝜑
(𝐶𝐿 cos 𝜑 − 𝐶𝐷𝑠𝑖𝑛𝜑)𝑟𝑑𝑟 

1.10 

 
𝑑𝑄 =  𝜎′𝜋𝜌

𝑣∞
2 (1 + 𝛼)2

sin2 𝜑
(𝐶𝐿 sin 𝜑 + 𝐶𝐷𝑐𝑜𝑠𝜑)𝑟2𝑑𝑟 

1.11 

A performance model of a propeller is formulated when combining the analyses of momentum 

theory and blade element theory as described in [12]. σ’ is the local solidity of the blade, ρ is the 

density of the air, α is the axial induction factor, φ is the local inflow angle measured in radians, 

CL is the coefficient of lift, and CD is the coefficient of drag. It is important to note that this 

analysis assumes that the size, twist distribution, and airfoil properties are known [12]. This 

formulated mathematical model is useful in estimating the time-averaged, radial distribution of 

induced velocities of a propeller with blades of predetermined airfoil characteristics and 

geometry [13]. However, to have more accuracy in the modeling procedure, additional models 

are used to account for operating conditions rather than just axisymmetric approaches [14]. 

These additional models act as corrections to the BEMT and consist of tip corrections, heavily 

loaded rotor corrections, yaw corrections, and dynamic wake corrections as proposed by the 

authors in [14]. These act as corrective add ons to the standard BEMT method in addition to the 

study proposed in [11] to increase the accuracy of the model. One approach to these corrections 

is the tip loss factor which makes the lift approach zero due to pressure equalization as the radial 

location on the propeller goes to the tip [15]. A function for the tip loss factor is formulated as a 

function of the localized correction factor 𝑓 and shown in Equations 1.12 and 1.13.  
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𝐹 =  

2

𝜋
cos−1(𝑒−𝑓) 

1.12 

 
𝑓 =  

𝑏

2
(
1 − 𝑟

𝑟𝜑
) 

1.13 

 

This relationship was derived from Prandtl where b is the number of blades in the propeller 

system, r is the radial distance at the section, and φ is the local inflow angle which is estimated 

through BEMT in an iterative process [15]. In addition, the authors in this study conclude that 

the tip loss factor correction illustrates a decrease in lift taking place at the tip of the propeller 

due to the described pressure equalization. 

1.3 Project Proposal 

Autonomous racing vehicles use carefully selected electric propulsion systems that are 

efficiently characterized based on mission design requirements to navigate through mapped 

courses. The main flight characteristic that pertains to the electric propulsion system in this 

application of interest is speed. Simulation environments are created within Unity3D to test 

autonomous capability in mapped courses and to monitor system performance throughout 

mission execution. The literature review discussed in the previous sections proposes methods 

and techniques used to efficiently characterize electric propulsion systems based on mission 

requirements and known propeller parameters. Therefore, propulsion system design and analysis 

are proposed on an existing prototype with monitoring applications in the simulated 

environment. The objective of this project is to study the aerodynamics of propeller performance 

at varying command signals and derive empirical relationships for the thrust and torque 

coefficients as functions of geometry and input power. 

Furthermore, aerodynamic performance is critical for any unmanned aerial vehicle 

application, especially for quadcopter racing technology. To enhance certain flight performance 

parameters such as speed, parasitic drag acting on the surface of the quadcopter needs to be 

minimized as the thrust produced by the propellers increases.  
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1.4 Methodology 

To ensure the practicality and feasibility of the existing prototype, further analysis needs to 

be performed. In addition to the simulated environment, a model of the prototype has been flown 

in a three-dimensional virtual course and tested for stability control utilizing PhysX engines 

developed by Nvidia. However, a detailed methodology of the proposed ideas is listed below. 

1) Electric Propulsion Selection Based on Mission Requirements and Performance Analysis 

a) Determine mission requirements for autonomous racing quadcopter based on desired 

speeds 

b) Discuss existing prototype under development and define modeling equations for the six-

degree-of-freedom rigid body 

c) Perform a literature survey on propeller performance analysis at varying speeds 

throughout mission execution on autonomous racing technology  

d) Model existing propulsion system based on literature techniques and approaches such as 

blade element momentum theory with corrections 

e) Analyze propeller system performance and compare results to simulations 

f) Monitor electrical system parameters such as battery current, battery voltage, ESC 

current, ESC voltage, and motor input current. 

2) Aerodynamic Performance Design and System Monitoring 

a) To reduce parasitic drag on the body of the vehicle a computational fluid dynamics 

simulation of the quadcopter vehicle will be simulated for an airframe design 

b) Literature review on shape design for quadcopter vehicles in subsonic flows 

c) Comparison between theoretical and experimental results of body aerodynamics such as 

induced drag 
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2 Preliminary Design 

2.1 Requirements 

Electric propulsion and vehicle requirements are defined in this section. It is important to 

outline and establish requirements in the early phases of the project development. These 

requirements are constrained to the AlphaPilot 2019 Innovation Challenge as mentioned in 

previous sections. In addition, requirements pertaining to the hardware are established to meet 

Federal Aviation Administration (FAA) safety guidelines and regulations for high-speed 

unmanned aerial vehicles. It is critical to meet the safety requirements before any preliminary 

testing. The vehicle and electric propulsion system requirements are outlined below. 

FAA Safety Guidelines and Regulations [16]: 

• Viewer Requirements: The vehicle may not exceed the visual line of sight of the viewer, 

or pilot. In addition, the viewer must be able to see all surrounding airspace 

• Flight: The vehicle cannot be flown over dense, populated areas, near airports, Special 

Use Airspace, stadiums, Washington, DC, or Security Sensitive Airspace (SSA) unless 

the airworthiness level allows 

• Autonomous: Although autonomous systems consider the pilot to be out-of-the-loop, the 

vehicle must have pilot intervention capabilities 

• Speed: Maximum flight speed for the vehicle is 100 mph (87 knots) 

Vehicle Requirements: 

• Structure: The frame size is constrained to a 7-inch propeller design; therefore, the 

minimum frame size is constrained to 330 millimeters by 350 millimeters. The frame 

sizing also pertains to the other electronics that will be mounted to it, such as the battery, 

ESCs, and motors.  

• Speed: The achievable flight speed is to fall within the minimum and maximum flight 

speeds that were achieved during the 2019 Innovation Challenge. The flight speed range 

is between 6-15 miles per hour.  

• Weight: The overall weight of the vehicle is constrained to the AlphaPilot requirements 

set on the standardized drones. The vehicle must not exceed an overall weight of 2.0 

kilograms. 
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Electric Propulsion System Requirements:  

• Power to Weight Ratio: A power to weight ratio between 2:1 and 6:1 is constrained by 

the physical limitations of the object detection hardware such as cameras and inertial 

measurement unit (IMU) sensors.  

Battery: A lithium polymer (Li-Po) battery is used to provide consistent power to the powertrain 

system. 

2.2 Component Section 

The components for the electric propulsion system are sized and described in the 

following sections. As illustrated in Figure 1.1, the main elements of the electric powertrain 

system are the battery, electronic speed controller, motor, and propeller. A power distribution 

board is used to distribute power to all four ESCs since an individual battery is utilized.  

2.2.1 Propeller Selection 

Choosing the correct size propeller is critical in achieving system requirements. Due to 

the constraints set out by the 2019 AI Innovation Challenge, a propeller diameter of 7 inches was 

chosen. In addition, a 3-blade propeller system was chosen over a highly common 2-blade 

system because at lower revolutions per minute the same thrust can be achieved [17]. This allows 

for a lower amperage draw for the motor but with an increase in thrust. Therefore, polycarbonate 

7x4x3 inch propellers are chosen for the propulsion system. Figure 2.1 shows the component. 

 

 

Figure 2.1. Chosen 7x4x3 inch Polycarbonate propeller. 
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2.2.2 Motor Selection 

The sizing of the motor needs to be well-paired to both the battery and the propeller. 

Specifically, the Kv rating, or speed constant, is a critical parameter of the motor that is measured 

in revolutions per minute per volt (RPM/V). In other words, this parameter is an interpretation of 

how quickly the brushless motors will rotate when started per supplied voltage through the wires 

[17]. An advantage of higher Kv with lower-pitched propellers is an increase in performance for 

acrobatic flying with a cost to efficiency [17]. Therefore, due to low weight, a 1380 Kv brushless 

direct-current motor is chosen as shown in Figure 2.2. 

 

 

Figure 2.2. 1380 Kv brushless direct-current motor chosen for the vehicle. 

2.2.3 Electronic Speed Controller Selection 

An essential parameter for sizing the ESC is the maximum rated amperage because this 

value must exceed the required input current for each individual motor to prevent the field-effect 

transistors (FET) from overheating [17]. Essentially, as mentioned in previous sections, the ESC 

receives PWM signals and transforms them to AC current. Embedded FETs switch the frequency 

which rotates the rotor. Therefore, with the selection of the 1380 Kv motor with a maximum 

current draw of 43.7 Amps, 60-Amp ESCs were chosen for the vehicle. Figure 2.3 shows the 

component.  
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Figure 2.3. 60-Amp Brushless ESC chosen for the vehicle. 

2.2.4 Battery Selection 

To properly size the battery for the given requirements, the battery capacity and cell 

configuration are considered. To supply sufficient voltage to the electric propulsion system, 

batteries are built in either series (S) to increase the voltage or in parallel (P) to increase the 

capacity [17]. In addition, the maximum charged voltage of the battery pack must agree with the 

selections of the propeller and speed constant of the motor to produce adequate thrust and RPM 

values to effectively lift the UAV [17]. Therefore, a 5-S, 5000 mAh battery with a maximum 

charge voltage of 18.5 V was chosen as the main power supply of the vehicle and is shown in 

Figure 2.4.  

 

 

Figure 2.4. 5-S, 5000 mAh Li-Po battery chosen for the main power supply. 

2.2.5 Sensor Selection 

Three main sensors are used onboard the vehicle that feed data to the flight controller: an 

IMU, ultrasonic sensor, and stereoscopic camera suite. The Adafruit BNO055 IMU is chosen 

because it comes equipped with a nine degree-of-freedom (DOF) sensor and 3 accelerometers to 
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measure angular acceleration and orientation. The SainSmart HC-SR04 ultrasonic sensor is 

chosen due to its performance within a 2-meter forward range. Lastly, the Arducam BO200 

stereoscopic camera is chosen for the use of the onboard computer vision and there are two of 

them. They face directly forward and are mounted on the topside of the vehicle.  

2.2.6 Flight Controller Selection 

Two single-board computers (SBCs) are used in combination for the onboard computer 

vision and the flight controller which are the Nvidia Jetson Nano and Raspberry Pi 4 Model B+, 

respectively. The 128-core Maxwell GPU that is integrated within the Jetson Nano is optimized 

for Machine Learning and video processing which requires a 5-Volt power supply. Moreover, 

the Raspberry Pi 4 Model B+ acts as the controller and sends PWM signals to spin the motors. 

General-purpose input-output (GPIO) pins are used to send the signals. Similar to the Nano, the 

Raspberry Pi also requires a 5-Volt power supply.  

2.2.7 Structural Frame Design 

In contrast to a traditional x-configuration frame, a radical t-configuration is chosen to 

provide a non-obstructed face view to the vehicle’s object detection software. This allows the 

placement of two forward-facing cameras on the top side of the frame at the forward most 

position. The model was designed using PTC CREO Parametric and is illustrated in Figure 2.5.  

 

 

Figure 2.5. 3D CAD Model of frame design showing a t-configuration. 
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From the 3D CAD model, the actual length from motor center to opposite motor center is 

365.57 (14.4 inches) and 319.31 (12.60 inches) for front to back motor and left to right motor, 

respectively. As modeled, the frame meets the minimum frame requirement that pertains to a 7-

inch propeller. It is important to note that the frame has a uniform thickness of 0.5 inches to 

securely mount hardware. The material of choice is polylactic acid (PLA) which is commonly 

used in additive manufacturing processes.  

2.3 Weight Estimation 

The total estimated weight of the aircraft is discussed here. A methodology is used to 

separate various subsystems which include the electric propulsion system, flight control system, 

and structural system. The electric propulsion system weight consists of the battery, motors, 

ESCs, and propellers and is defined by Equation 2.3.1. 

 

 𝑊𝐸𝑃 = 𝑊𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + (𝑊𝐸𝑆𝐶𝑥4) + (𝑊𝑚𝑜𝑡𝑜𝑟𝑥4) + (𝑊𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟𝑥4) 2.3.1 

 

The flight control system consists of hardware that uses machine learning and computer vision to 

control the behavior of the UAV, such as both stereoscopic cameras, sensors, Raspberry Pi 4 

Model B+ flight controller, and the Nvidia Jetson Nano. Equation 2.3.2 defines the overall 

weight of this system.  

 𝑊𝐹𝐶 = 𝑊𝑅𝑎𝑠𝑝𝑏𝑒𝑟𝑟𝑦 + 𝑊𝑁𝑎𝑛𝑜 + 𝑊𝑠𝑒𝑛𝑠𝑜𝑟𝑠 + 𝑊𝑐𝑎𝑚𝑒𝑟𝑎𝑠 2.3.2 

 

The structural system consists of the frame and all mounting hardware such as bolts, nuts, 

adhesive strips, and brackets. This system can be described by Equation 2.3.3. 

 

 𝑊𝑆 = 𝑊ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 + 𝑊𝑓𝑟𝑎𝑚𝑒 2.3.3 

 

The overall weight of the system can be estimated using Equation 2.3.4. In addition to estimating 

the overall weight, this methodology is useful in determining subsystem weight for the vehicle.  

 

 𝑊 = 𝑊𝐸𝑃 + 𝑊𝐹𝐶 + 𝑊𝑆 2.3.4 

 

By using the methodology described above and Table 2.1, the overall weight of the vehicle is 

1846.7 grams. It is important to note that the specific weights of each component were measured 

using a weight scale with a resolution of 0.05 grams. Nonetheless, the specific weight for the 

electric propulsion, flight control, and structural systems are 1181, 331.7, and 334, respectively. 
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Table 2.1. List of component weights. 

Component Quantity Weight (g) 

Frame with PDB 1 334 

ESC 4 62 

Battery 1 677 

HQ 7x4x3 Propeller 4 10 

TBS Crossfire Nano RX 

Receiver 

1 2 

SainSmart HC-SR04 

Ultrasonic Sensor 

1 8.7 

BNO550 IMU 1 3 

Avenger Series Motor 4 54 

Arducam B0200 Stereoscopic 

Camera 

2 65.5 

Nvidia Jetson Nano 1 140 

Raspberry Pi 4 Model B+ 1 47 

 Total 1846.7 

 

2.4 Blade Element Theory 

For theoretical analysis, Blade Element Theory (BET) is utilized for the rotor in hovering 

and climbing conditions. BET is mainly utilized to estimate the theoretical forces of a blade that 

correspond to its varying rotation through the air which are used to calculate the performance 

and forces over the rotor. It is important to note that lifting-line theory (LLT) applied to a 

spinning wing is the foundation for BET [18]. The rotor is split into a number of infinitesimal 

segments in BET where the lift and drag can be estimated using two-dimensional airfoil 

characteristics at each segment based on local flow data. This data includes inflow, climb speed, 

and the angular velocity of the rotor. To obtain the power consumed and thrust produced by an 

individual rotor, both the drag and lift are integrated from the root of the airfoil to the tip [18]. 

Furthermore, to obtain the total power required and total thrust available, both equations are 

multiplied by the number of blades in the lift producing system. Essentially, every infinitesimal 

segment along the chord line of the blade experiences an in-plane velocity that is denoted by UT 

that is tangent to the rotation plane. Figure 2.6 illustrates the forces, velocities, and geometry of 

the sectional blade. In a hovering condition, the rotational speed of the rotor is defined as the 

tangential velocity [18]. In addition, Figure 2.6 shows that every infinitesimal segment has a 

specific pitch angle with respect to U, the free stream velocity, that is denoted by θ. The effective 

angle of attack, α, and the inflow angle, ф, are affected by induced inflow, ν, and the climb 

velocity, V, respectively [18]. These variables are defined below by Equations 2.4.1 and 2.4.2.  
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Figure 2.6. Blade segment aerodynamics. 

 
Φ = arctan (

𝑉

𝜔𝑟
) 

2.4.1 

 
𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑉

𝜔𝑟
) 

2.4.2 

 

The magnitude of the resultant velocity with components of UT and UP that the airfoil 

experiences can be defined by Equation 2.4.3. The inflow angle can also be expressed as 

functions of the velocity components as defined in Equation 2.4.4. 

 

 
𝑈 =  √𝑈𝑇

2 − 𝑈𝑃
2 

2.4.3 

 
Φ = tan−1(

𝑈𝑃

𝑈𝑅
) 

2.4.4 

 

The closed-form equations of the lift and drag are defined by Equations 2.4.5 and 2.4.6, 

respectively, where Cl is computed by a simplified lift expression of Cl = aα and α = ፀ - ф. The 

lift and drag forces, as shown in Figure 2.4, are normal to and parallel to the resultant velocity 

[19]. 

 
𝐿 =  

1

2
𝜌𝑈2𝑐𝐶𝑙 

2.4.5 

 𝐷 =  
1

2
𝜌𝑈2𝑐𝐶𝑑  2.4.6 
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The density of air and chord line of the blade are denoted by ρ and c, respectively. Simplified 

forms of Cl and Cd, which are the sectional coefficients, are used since in general they are 

functions of the Mach number and angle of attack [19]. Fx and Fz are the elements of the overall 

aerodynamic force that are parallel and normal to the blade disk plane which are defined by 

Equations 2.4.7 and 2.4.8, respectively. 

 𝐹𝑧 = 𝐿𝑐𝑜𝑠(Φ) − 𝐷𝑠𝑖𝑛(Φ) 2.4.7 

 𝐹𝑥 = 𝐿𝑠𝑖𝑛(Φ) − 𝐷𝑐𝑜𝑠(Φ) 2.4.8 

 

Multiplying by the number of blades, N, and differentiating with respect to the blade radius, r, 

gives expressions for the elemental power, torque, and thrust on the blade. Furthermore, to obtain 

the complete forces acting on the rotor, these expressions are integrated along the span of the 

blade from root to tip [19]. 

 𝑑𝑇 = 𝑁𝐹𝑧𝑑𝑟 2.4.9 

 𝑑𝑄 = 𝑁𝐹𝑥𝑟𝑑𝑟 2.4.10 

 𝑑𝑃 = 𝜔𝑑𝑄 = 𝑁𝐹𝑥𝜔𝑟𝑑𝑟 2.4.11 

 

In hovering and vertical flight conditions, the velocity vector normal to the disk plane, UP, is 

in terms of the induced velocity, vi, and the climb velocity which is equal to zero at hover. In 

addition, UT is due to a rate ω that the blades are rotating at. Thus, UT = ωr and UP = (V+vi). 

Assumptions and simplifications are made to reduce the sectional forces of the blade and are 

listed below [18][19]: 

• Small-angle assumptions are made where 𝛂 << 1, θ << 1, and ф << 1 

• Compressibility effects are negligible 

• Stall effects are negligible 

• The angle of attack and lift coefficient are linearly related 

• Blade tip losses are neglected 

• The rotor is twisted linearly 

• Cd is small  

The segment forces acting on the blade are then reduced and defined by Equations 2.4.12 

through 2.4.15.  

 
𝐿 ≅

1

2
𝜌𝑈𝑇

2𝑐𝑎(𝜃 −
𝑈𝑃

𝑈𝑇
) 

2.4.12 

 
𝐷 ≅

1

2
𝜌𝑈𝑇

2𝑐𝐶𝑑 
2.4.13 

 𝑑𝑇 ≅ 𝑁𝐿𝑑𝑟 2.4.14 
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 𝑑𝑄 = 𝑁(𝐿Φ + 𝐷)𝑟𝑑𝑟 2.4.15 

 

Normalization with respect to the rotor radius, rotor speed, and local air density converts 

all terms into dimensionless quantities [19]. Equations 2.4.16 and 2.4.17 are the sectional thrust 

and power equations in coefficient form where the solidity ratio σ = Nc/πr and the inflow ratio λ 

= (V+v)/Ωr. 

 𝑑𝐶𝑇 =
𝜎𝑎

2
(𝜃𝑈𝑇

2 − 𝑈𝑇𝑈𝑃)𝑑𝑟 =
𝜎𝑎

2
(𝜃𝑟2 − 𝜆𝑟)𝑑𝑟  2.4.16 

 
𝑑𝐶𝑃 = 𝑑𝐶𝑄 = [

𝜎𝑎

2
(𝜃𝑈𝑇𝑈𝑃 − 𝑈𝑃

2) +
𝜎𝐶𝑑

2
𝑈𝑇

2] 𝑟𝑑𝑟

= [
𝜎𝑎

2
(𝜃𝑟𝜆 − 𝜆2) +

𝜎𝐶𝑑

2
𝑟2] 𝑟𝑑𝑟 

2.4.17 

 

With constant drag coefficient, constant chord, uniform flow, and other simplifying assumptions, 

an analytical solution may be achieved for a general rotor system when integrated over the span 

of the blade [19]. BEM thus gives an expression for rotor thrust coefficient as defined in 

Equation 2.4.18 in integral form. With the underlying assumptions of θ = θ0 + rθtw = θ.75 + (r - 

0.75)θtw) and λ is constant, Equation 2.4.18 becomes 2.4.19.  

 

𝐶𝑇 = ∫
𝜎𝑎

2
(𝜃𝑟2 − 𝜆𝑟)𝑑𝑟

1

0

 

2.4.18 

 

The pitch of the blade with constant chord, θ.75, is defined as the pitch of the blade at 75% of the 

radius [19].  

 
𝐶𝑇 =

𝜎𝑎

2
(
𝜃.75

3
−

𝜆

2
) 

2.4.19 

The induced velocity is given by BET and defined in Equation 2.4.22 where it is 

expressed as a function of the thrust coefficient and the climb inflow ratio for both climbing and 

hovering conditions. In hover, the induced velocity expression can also be expressed in terms of 

the blade pitch angle only if the thrust coefficient is required and is defined in Equation 2.2.23. 

Using Equation 2.4.24, the blade pitch angle can be defined. 

 

𝑣𝑖 =  
𝜆𝑐

2
+ √(

𝜆𝑐

2
)

2

+
𝐶𝑇

2
 

2.4.22 

 

𝑣𝑖 = √(
𝐶𝑇

2
) =

𝜎𝑎

16
[√1 +

64

3𝜎𝑎
𝜃.75 − 1] 

2.4.23 
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𝜃.75 =
6𝐶𝑇

𝜎𝑎
+

3

2
√

𝐶𝑇

2
 

2.4.24 

Once integrated, the differential power coefficient, dCP, can be expressed as shown in 

Equation 2.4.25. The first and second terms in this expression are defined as the induced power 

loss and the profile power loss, respectively [19]. Due to the induced angle of attack and viscous 

drag forces, the component of lift that is in-plane gives rise to the induced power loss and the 

profile power loss, respectively [19]. In Equation 2.4.26, k and Cdo are an empirical correction 

factor and a proper mean drag coefficient [19].   

 
𝐶𝑃 = ∫ 𝜆𝑑𝐶𝑇 + ∫

𝜎𝐶𝐷

2
𝑟3𝑑𝑟

1

0

 
2.4.25 

 

𝐶𝑃 =
𝑘𝐶𝑇

3
2

√2
+

𝜎𝐶𝐷0

8
 

2.4.26 

Combining Momentum theory with Blade Element Theory, the coefficient of thrust, 

power, and torque can be expressed as a function of the nondimensional velocity, J, which is the 

advanced ratio in Blade Element Momentum Theory (BEMT) [21]. Equations 2.4.27 through 

2.4.30. shows the relationships. 

 
𝐶𝑇 =

𝜋

8
∫ (𝐽2 + 𝜋2𝑥2)𝜎[𝐶𝑙 cos(Φ + 𝛼𝑖) − 𝐶𝑑 sin(Φ + 𝛼𝑖)]𝑑𝑥

1

𝑥𝑏

 
2.4.27 

 
𝐶𝑃 =

𝜋

8
∫ 𝜋𝑥(𝐽2 + 𝜋2𝑥2)𝜎[𝐶𝑙 sin(Φ + 𝛼𝑖) + 𝐶𝑑 cos(Φ + 𝛼𝑖)]𝑑𝑥

1

𝑥𝑏

 
2.4.28 

 𝐶𝑃 = 2𝜋𝐶𝑄 2.4.29 

 
𝐽 =

𝑈

𝑛𝐷
 

2.4.30 

In addition, the efficiency of the propeller can be expressed as a function of these coefficients 

and the advance ratio. It is important to note that an increase in the advance ratio results in an 

increase in the total propeller efficiency as described by the linear relation defined by Equation 

2.4.31 [21]. 

 
𝜂 =

𝐶𝑇𝐽

𝐶𝑃
 

2.4.31 
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3 Modeling 

The modeling of the autonomous unmanned aerial vehicle is derived in this section. It is 

important to understand the dynamics of the drone and the behavior it experiences from the 

thrust and torque produced from various motors. 

3.1 Equations of Motion 

To model the dynamics of a quadcopter and understand how various forces act on the 

body, it is necessary to derive the equations of motion that express the vehicle. The motion of the 

quadcopter can be expressed through a set of non-linear differential equations. These equations 

create difficulty in applying controllers and accurate simulation for the quadcopter system. The 

first step in deriving the equations of motion of the quadcopter system is defining sets of 

coordinate systems since the vehicle is subject to the concept of variable thrusts and torques. 

Figure 3.1 illustrates both the inertial and body-fixed frames used to determine the orientation of 

the vehicle. Essentially, the motor and fixed-pitch propeller combinations are organized in pairs 

along both the vertical and horizontal axis.  

 

 

Figure 3.1. Quadcopter coordinate system orientation definition. 
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Each pair is counter-rotating which produces a reaction torque on the body frame that is equally 

opposed at different motor speeds since the rigid body of the frame is not perfectly symmetrical. 

By having this cancellation in moment, the vehicle can sustain a consistent heading when 

hovering. In addition, a yawing motion is produced when the speed of a set of counter-rotating 

motor and fixed-pitch propeller combinations is either increased or decreased. This variation in 

speed produces a net counter torque on the rigid body that is non-zero. Furthermore, the altitude 

is adjusted with the variation of the thrust from all rotors while maintaining a zero-net moment. 

Nonetheless, the quadcopter platform is considered an under-actuated system since it can 

maneuver in six-degrees-of-freedom, but with only four control inputs. These control inputs are 

directly related to the overall amperage applied to each motor. 

Table 3.1. Summary of variables used for quadcopter equations of motion. 

Variable Description 

p Roll rate 

q  Pitch rate 

r Yaw rate 

Φ Euler roll angle 

θ Euler pitch angle 

φ Euler yaw angle 

u Velocity in the body frame along xb 

v Velocity in the body frame along yb 

w Velocity in the body frame along zb 

x Inertial frame position along XG 

y Inertial frame position along the YG 

z Inertial frame position along the ZG 
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Table 3.2. Summary of quadcopter equations of motion. 

Translational Kinematic Equations (3.1) 

 

 

Force Equations (3.2) 

 

 
Rotational Kinematic Equations (3.3) 

 

 

Moment Equations (3.4) 

 

 

 

Table 3.1 and 3.2 summarize the variables and equations derived for the rigid body 

quadcopter dynamics, respectively. It is important to note that attitude determination utilizes the 

body-fixed reference frame while the translational position determination utilizes the global 

fixed reference frame.  

 Utilizing the CAD software, values for the mass and inertia of the vehicle are gathered 

and listed in Table 3.3. In addition, the forces corresponding to each axis in the inertial frame are 

given. It should be noted that there is a positive force parallel to the z-axis in the body frame of 

the vehicle due to the fixed motor position that only provides an upward force vector, fz. The 

operating range of this value is between 0 and 21.37 Newtons as described in Section 3.3. 
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Table 3.3. Summary of CAD values for mass and inertia. 

Symbol Value Unit 

m 1.90 Kg 

g 9.81 m/s2 

Ix 0.023241891 Kg/m2 

Iy 0.054302332 Kg/m2 

Iz 0.073220297 Kg/m2 

fx 0 Kg-f 

fy 0 Kg-f 

fz 2.178 Kg-f 

 

Uncertainties emerge with the estimated modeling values due to user errors in the 

modeling software. It is important to note that the material choices for each component in the 

assembly were in-family to the physical part. Nonetheless, the physically measured weight as 

discussed in Section 2.3 is used in the modeling software. Due to the resolution of the weight 

scale used for measuring all hardware parts, the weight used in the CAD model has ±1.05 grams 

of inaccuracy. 

3.2 Brushless Direct-Current Motor and Propeller Model  

To begin modeling of a brushless direct-current motor a typical schematic is used to 

illustrate the powertrain of the electric vehicle. Figure 3.2 shows a typical flow scheme of the 

electric powertrain using a three-phase motor. 

 

 

Figure 3.2. Electric powertrain scheme typically used for quadcopter UAV. 

To simplify this model, both the electronic speed controller and battery are treated as 

constant in which the performance characteristics are directly related to the inherent technology 

rather than operational circumstances [22]. Therefore, the motor and propeller are of main 

significance in the modeling of this powertrain. Mono-phase equivalent circuits can be used to 

model brushless direct-current motors assuming a trapezoidal flux distribution [22]. In addition, 

it is assumed that the induced currents are neglected which results in a mathematical model 

expressed by Equations 3.2-3.4: 
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 𝑄𝑚 = 𝐾𝑡(𝐼 − 𝐼0) 3.2 

 𝜔 = 𝐾𝑣(𝑉 − 𝑅𝐼) 3.3 

 
𝜂 =

𝑃𝑚

𝑃𝑖𝑛
=

𝑄,𝜔

𝑉𝐼
 

3.4 

 

where in Equation 3.2, Kt, is the torque gain expressed in torque per unit area, I0, is the no-load 

current expressed in amperes, and I is the current drawn from the battery expressed in amperes. 

In Equation 3.3, Kv is the voltage gain measured in revolutions per volt, R is the resistance in the 

winding of the motor measured in Ohms, and V is the voltage supplied by the battery measured 

in Volts. In Equation 3.4, ղ is the efficiency of the motor and is a ratio of the output mechanical 

power over the input mechanical power measured in Watts.  

 Datasheets of hardware specification typically provide characteristic parameters such as 

Kv, Kt, I0, and R. If these parameters are not available through a manufacturer's datasheet where 

they can be inaccurate due to small scale UAV applications, they can be obtained through 

experimental means [23].  

Nonetheless, utilizing the expressions of the motor and Ohm’s Law, the power that the 

motor consumes can be expressed in Equation 3.5. Equation 3.2 is rearranged to solve for the 

current and substituted into Equation 3.3, while Equation 3.3 is rearranged to solve for the 

voltage.  

 

 
𝑃 = 𝐼𝑉 =  

(𝑄 +  𝐾𝑡𝐼0)(𝐾𝑡𝐼0 𝑅 +  𝑄𝑅 +  𝐾𝑡𝐾𝑣)

𝐾𝑡
2  

3.5 

 

To support the simple mathematical model key simplifications and assumptions are made 

and listed below: 

• The motor resistance is neglected, which makes the angular velocity proportional to the 

power consumed 

• Since I0 is small in a no-load circumstance, KtI0 << Q 

Therefore, the simplified power equation for the motor is expressed as [23]: 

 

 
𝑃 =  

𝐾𝑣

𝐾𝑡
𝑄𝜔 

3.6 

 

Utilizing conservation of energy, the motor draws energy over time which is equivalent 

to the force produced by the rotors multiplied by the distance that the air flowing through the 

propeller is moved. In other words, the power drawn multiplied by a change in time is equal to a 

force multiplied by a change in distance. This relationship is expressed in Equation 3.7 as: 
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 𝑃 𝑑𝑡 = 𝐹 𝑑𝑥 3.7 

 

where F is the thrust, T, and the ratio of the change in distance over the change in time is 

described as the induced velocity of the rotor. The equation can be rearranged as: 

 

𝑃 =  
𝐾𝑣

𝐾𝑡
𝑄𝜔 =

𝐾𝑣𝐾𝑇

𝐾𝑡
𝑇𝜔 =

𝑇
3
2

√2𝜌𝐴
 

3.8 

and solving for thrust T:  

 

𝑇 =  (
𝐾𝑣𝐾𝑇√2𝜌𝐴

𝐾𝑡
𝜔)

2

= 𝛼𝜔2 

3.9 

 

It is obtained that the thrust and the square of angular velocity are proportional. KT is 

determined by the blade parameters and configuration and is a constant proportional to the thrust. 

The constant 𝛼 can be determined experimentally through load test data provided by the 

manufacturer.  

3.3 Load Test Data 

Load test data was provided by the manufacturer that utilized a 1380 Kv motor. Paired 

with the motor is a 7x4x3 inch propeller. This test configuration has a similar setup to the one 

presented in this paper. The only minor difference is that this test configuration uses a 50-Amp 

electronic speed controller whereas this paper uses a 60-Amp electronic speed controller. It is of 

minor significance since the electronic speed controller is treated as constant as mentioned in the 

previous section.  

 The test data provides values for voltage, current, RPM, thrust, and input power at 

various throttle settings. From the data, it is important to note that the maximum current draw of 

the motor is 43.7 Amps. A summary of the load test data is tabulated in Table 3.4. In addition, it 

is observed that the voltage from the battery decreases by 0.2 V over a maximum throttle input 

while the amperage draw from the battery significantly increases. The electronic speed controller 

was commanded in a similar method as presented in this paper which uses pulse-width 

modulation signals. Using this data an identification is made for the propeller thrust model. The 

tabulated load test data follows a quadratic relation and is illustrated in Figure 3.3. Therefore, 

this data adheres to the mathematical model expressed in Equation 3.9: 

 

 𝑇 =  𝛼𝜔2 3.9 
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where T is the thrust that the propeller and motor combination produce and ω is the speed of the 

motor measured in radians per second. It is then identified that the constant 𝛼 is 

𝑎 = 5.50𝐸−6 

Table 3.4. Load test data of motor and propeller combinations. 

 

 

 

 

 

1380 Kv 

Motor with 

7x4x3 inch 

Propeller 

Throttle 

(%) 

Voltage 

(V) 

Current 

(A) 

RPM Thrust (N) Input 

Power (W) 

30 20.0 2.8 7681 3.09 56.00 

40 20.0 4.5 9128 4.97 90.0 

50 20.0 8.1 11195 6.94 162.0 

60 20.0 10.9 12590 8.49 218.0 

70 19.9 17.5 14345 11.30 348.25 

80 19.9 25.7 15991 14.72 511.43 

90 19.8 34.9 16550 19.05 691.02 

100 19.8 43.7 18820 21.37 865.26 

 

 

Figure 3.3. Static thrust curve for load test data. 
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3.4 Propeller Modeling  

A quadcopter vehicle typically utilizes fixed-pitch propellers that are integrated with the 

propulsion system to provide rigidity throughout operation. Two key characteristics measure the 

performance of the propeller: torque and thrust. By taking equations 2.4.16 and 2.4.17, and 

rearranging them 

 
𝑄 = 𝐶𝑄𝜌 (

𝜔

2𝜋
)

2

𝐷𝑃
5 

3.10 

 
𝑇 = 𝐶𝑇𝜌 (

𝜔

2𝜋
)

2

𝐷𝑃
4 

3.11 

 

where the torque and thrust coefficients are estimated using geometric parameters provided by 

the manufacturer. In Equations 3.10 and 3.11 the density changes with respect to the local height 

of the vehicle and the ambient temperature. Since the altitude and temperature have negligible 

changes during flight tasks, both the temperature and height can be considered constant for the 

purposes of this performance evaluation. In terms of propeller geometry such as diameter, pitch, 

number of blades, and weight, the coefficients are calculated using a geometric approach. Figure 

2.6 can also be illustrated as shown in Figure 3.4 to highlight the absolute angle of attack, αab.  

 

Figure 3.4. Illustration of absolute angle of attack and geometry. 

Using Figure 2.6 and the geometry of the airfoil section, the pitch angle can also be expressed as 

 

 
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛

𝐻𝑝

𝜋𝐷𝑃
 

3.12 

 

where DP is the propeller diameter and HP is the propeller pitch.  
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Using Figure 3.4, Equation 2.4.2 the effective angle of attack, is expressed as  

 

 𝛼 = 𝜀(𝜃 − 𝜙0) 3.13 

 

where epsilon is considered a correction factor that is produced with the presence of downwash. 

In addition, ϕ0 is expressed as the propeller helix angle which is assumed to equal zero due to 

flight characteristics of a quadcopter vehicle [24]. Therefore, the absolute angle of attack as 

shown in Figure 3.4 is  

 𝛼𝑎𝑏 = 𝛼 − 𝛼0 3.14 

 

where α0 is the zero-lift angle. This relationship is related to the lift and drag coefficients as 

proposed in [24] as  

 
𝐶𝐿 =  

𝐾0𝛼𝑎𝑏

1 +
𝐾0

𝜋𝐴

 
3.15 

 
𝐶𝐷 = 𝐶𝑓𝑑 +  

1

𝜋𝐴𝑒
𝐶𝐿

2 
3.16 

 

where A is the aspect ratio (A = DP/c) and K0 is the slope of the lift curve. In addition, e is the 

Oswald efficiency factor and Cfd is considered the zero-lift drag coefficient. Cfd relates the 

relative angle of attack, Reynolds number, and the thickness of the blade [24]. At this point, the 

lift produced by the blade airfoil is expressed in terms of the lift coefficient, density, and the 

rotational speed. Rearranging Equation 2.4.5 and expressing it in terms of the blade area gives  

 
𝐿 =

1

2
𝐶𝐿𝜌𝑆𝑈2 

3.17 

 
𝑆 =

𝐵𝑃

2
𝛾𝐷𝑝𝑐 

3.18 

 
𝑈 ≈

𝜋𝜁𝐷𝑃𝜔

60
 

3.19 

 

where S is the blade area, U is the average rotor linear velocity, and γ is the correction coefficient 

[24]. As described in section 2.4, the velocity of the blade is decomposed into two components 

where generally the latter is much lower than the former for quadcopter applications [24]. In 

addition, Equation 2.4.3 can be rewritten as Equation 3.19 which is in terms of propeller 

geometry. Blade element theory also suggests that the thrust provided by the rotating blades of 

the quadcopter does not equal to the produced lift [19]. The thrust is expressed as  
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𝑇 = 𝐿

cos(𝜅 + 𝜙0)

cos (𝜅 − 𝛿)
 

3.20 

   

where κ is the corrected angle that emerges from the downwash effect and is expressed as 

  

 𝜅 = arctan 
𝐶𝐷

𝐶𝐿
 . 3.21 

 

In addition, the torque can be expressed as shown in Equation 3.22 based on these results. Here 

the torque is a function of the density, coefficient of drag, area of the blade, and linear velocity of 

the rotor [24]. 

 
𝑄 =

1

4
𝜌𝐵𝑃𝐶𝐷𝑈2𝑆𝐷𝑃 

3.22 

 

Therefore, the torque and thrust coefficients are expressed below according to Equations 3.12-

3.22.  

 
𝐶𝑄 =

1

8𝐴
𝜋2𝐶𝐷𝜁2𝛾𝐵𝑃

2 
3.23 

 

𝐶𝑇 =
1

4
𝜋3𝛾𝜁2𝐵𝑃𝐾0

𝜀𝑎𝑟𝑐𝑡𝑎𝑛
𝐻𝑃

𝜋𝐷𝑃
− 𝛼0

𝜋𝐴 + 𝐾0
 

3.24 

 

Parameters that are not reflected within the geometry of the airfoil such as γ, α0, ε, ζ, K0, and Cfd 

are difficult to calculate analytically. Therefore, Table 3.5 lists the values of these parameters as 

suggested by experimental results from relevant literature [24].  

Table 3.5. List of suggested values for propeller parameters from relevant literature. 

Symbol Value 

ζ 0.6 

α0 0 

ε 0.85 

γ 0.9 

c 0.02 

e 0.9 

Cfd 0.02 

A 8.89 

K0 6.28 
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To validate the modeling procedure described in this section, the experimental load test data that was 

provided by the manufacturer is used as a comparison to the analytical data obtained from these propeller 

models. Figure 3.5 illustrates the results obtained for the propeller thrust. 

 

 

Figure 3.5. Model verification comparison for propeller thrust. 

3.5 Motor Modeling 

Electric direct-current motors are essential to the performance of a quadcopter vehicle. 

These motors allow the vehicle to have both translational and rotational motion creating a six 

DOF rigid body. For the purposes of this propulsion system architecture, brushless DC motors 

are used for providing the vehicle an orientation in three-dimensional space. Essentially, these 

motors can be described as synchronous three-phase permanent magnet motors [24]. Therefore, a 

permanent magnet direct-current motor is used to model the chosen component. The modeling of 

this component is expressed as an equivalent circuit design that is shown in Figure 3.6.  
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Figure 3.6. Brushless DC motor equivalent model. 

It is important to note that in the equivalent motor model both the transient process produced by 

converted elements and the armature inductance denoted by Lm are negligible [24]. In the motor 

model I0 is the no-load current necessary to overcome frictional forces due to the mechanical 

drivetrain, eddy current losses, and magnetic hysteresis due to magnetic properties. At a specific 

motor speed, the no-load current is estimated to be constant [24]. Furthermore, Ea is denoted as 

the back-electromotive force measured in Volts. Um is the similar supply voltage entering the 

motor model measured in Volts. Rm is considered as the armature resistance measured in Ohms. 

Im is expressed as the similar motor input current and is measured in Amps. Lastly, Ia provides a 

relationship for expressing the electromagnetic torque within the equivalent motor model. It is 

important to note that this motor equivalent circuit model focuses on retrieving the similar supply 

voltage and the similar motor input current. Both Im and Um are essential to producing 

appropriate thrust to maneuver the vehicle in the desired orientation. According to [25], the 

electromagnetic torque within the motor Te is expressed as  

 

 𝑇𝑒 = 𝐾𝑇𝐼𝑚 3.25 

 

where the motors torque constant is denoted as KT and measured in Newton-meters per amp. It is 

important to note that the output torque calculated in the previous section for the propeller model 

is equal to the output torque generated by the motor and is expressed as  

 

 𝑀 = 𝑇𝑒 − 𝑇0 = 𝐾𝑇(𝐼𝑚 − 𝐼0̂) 3.26 
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where 𝐼0̂ is the working state no-load current produced by the motor. After rearranging equation 

3.26 the similar motor input current is calculated as  

 
𝐼𝑚 =

𝑀

𝐾𝑡
+ 𝐼0̂ 

3.27 

   

which is a function of the propeller torque, torque constant, and no-load current in working state. 

Im must not exceed the manufactures specifications outlined in Section 3.3 of Im,max = 43.7 Amps. 

According to [25], the no-load current and the similar motor input current at initial motor state 

are assumed to be equal, therefore, Im,0 = 𝐼0̂. Furthermore, the back electromotive force within 

the motor model is expressed as  

 𝐸𝑎 = 𝐾𝐸𝜔 3.28 

   

where the back-electromotive force constant is denoted by KE and ω is defined as the motor 

speed. The similar motor voltage is the voltage supplied by the battery and according to [25] it is 

expressed as  

 𝑈𝑚 = 𝐾𝐸𝜔 + 𝐼𝑚𝑅𝑚 3.29 

   

where the back-electromotive force is added to the motor voltage. Since KV is the voltage gain 

measured in revolutions per volt, KV,0 is the nominal no-load voltage constant. This constant is 

defined as the ratio between the no-load input voltage and the no-load motor speed.  

 𝑁0 = 𝐾𝑉,0𝑈0 3.30 

   

It is important to note that the no-load conditions are similar to the initial operating conditions, so it is 

assumed in [25] that Um,0 = Um. After combining and rearranging Equations 3.29 and 3.30 an expression for 

KE is calculated  

 𝐾𝐸 =
𝑈𝑚,0−𝐼𝑚0𝑅𝑚

𝐾𝑉0𝑈𝑚0
. 3.31 

 

According to electric machine theory, an important relationship can be established between the 

back-electromotive force constant and the motor torque constant which is expressed as 

  

 𝐾𝑇 = 9.55𝐾𝐸. 3.32 

Therefore, KT becomes 

 𝐾𝑇 = 9.55
𝑈𝑚,0−𝐼𝑚0𝑅𝑚

𝐾𝑉0𝑈𝑚0
. 3.33 
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With these relationships that were derived from [25], expressions for the similar motor input 

current and similar supply voltage can be calculated in terms of the armature resistance, no-load 

current, no-load voltage, no-load voltage constant, and the propeller torque.  

 

 
𝑈𝑚 = 𝑅𝑚 (

𝑀𝐾𝑉0𝑈𝑚0

9.55(𝑈𝑚0 − 𝐼𝑚0𝑅𝑚)
+ 𝐼𝑚0) +

𝑈𝑚,0 − 𝐼𝑚0𝑅𝑚

𝐾𝑉0𝑈𝑚0
𝜔 

3.34 

   

 𝐼𝑚 =
𝑀𝐾𝑉0𝑈𝑚0

9.55(𝑈𝑚0−𝐼𝑚0𝑅𝑚)
+ 𝐼𝑚0 . 3.35 

 

3.6 Electronic Speed Controller Modeling 

An ESC is used to communicate the amount of voltage and current needed to supply the 

motor with adequate power. Essentially, the ESC’s input from the battery which is DC voltage is 

converted to a three-phase signal. This alternating signal and rotor rotation are synchronized. In 

addition, the signal is directly utilized by the armature windings. It is important to note that the 

ESC regulates the speed of the motor between a specific range that is dependent on the battery 

voltage and the load capacity. Similar to the approach taken in Section 3.5, Figure 3.7 illustrates 

and equivalent circuit for the ESC used in this application. 

 

Figure 3.7. ESC equivalent circuit model schematic for brushless dc motor. 

In the figure above, Ue is the supplied voltage and Ie is the supplied current provided by the 

battery pack. The purpose of this modeling procedure is to obtain Ue and Ie as functions of the 
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motor input voltage and input current as defined in Section 3.5. Therefore, as illustrated in Figure 

3.7, Ueo is defined as the equivalent dc voltage expressed as 

 

 𝑈𝑒𝑜 = 𝑈𝑚 + 𝐼𝑚𝑅𝑒. 3.36 

 

Equation 3.37 is used to describe the duty cycle, Dc, of the system. Essentially, the duty cycle 

value is measured in percentage where this percentage expresses the specific percentage of time 

that a desired digital signal is active on an interval of time.  

 

 
𝐷𝑐 =

𝑈𝑒𝑜

𝑈𝑒
≌

𝑈𝑒𝑜

𝑈𝑏
 

3.37 

 

where the range of the duty cycle is [0,1]. According to [24], the duty cycle described by this 

electrical system productively creates an integrated dc buck converter because the duty cycle 

effectively modulates the average motor voltage across a commutating sequence. Therefore, the 

input current to the ESC is expressed as  

 𝐼𝑒 = 𝐷𝑐𝐼𝑚. 3.38 

 

It is important to note that the input current is limited by the maximum input current, Ie,max. Also, 

the ESC voltage, Ue, can be expressed in terms of the battery voltage, current, and resistance 

through Ohms Law  

 𝑈𝑒 = 𝑈𝑏 − 𝐼𝑏𝑅𝑏. 3.39 

 

For multi-copter applications, the number of motors is directly equivalent to the number of ESCs 

unless an ESC combo is used such as a four-in-one ESC. However, for this application there are 

four motors, therefore, there are four ESCs. Given the number of rotors, Nr, the battery current, 

Ib, can be expressed as  

 𝐼𝑏 = 𝑁𝑟𝐼𝑒 + 𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 3.40 

 

where the current applied to the dedicated flight controller is defined as Icontrol. Finally, 

expressions for Ue, Ie, and Dc are summarized below in Equations 3.37-3.39. 
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𝐷𝑐 =

𝑈𝑚 + 𝐼𝑚𝑅𝑒

𝑈𝑏
 

3.37 

 𝐼𝑒 = 𝐷𝑐𝐼𝑚 3.38 

 𝑈𝑒 = 𝑈𝑏 − 𝐼𝑏𝑅𝑏 3.39 

 

3.7 Battery Modeling 

For hovering conditions, the battery model described in this section focuses on estimating 

the endurance, specifically the time of endurance measured in minutes. Endurance time is 

denoted by Tend and is a function of the battery current and capacity. It is important to note that 

assumptions were made to simplify the battery discharge process. One key assumption involves 

keeping the battery voltage constant, so for this specific application the 5-S battery has a constant 

maximum charge voltage of 18.5 Volts. In addition to simplifying the discharge process, it is 

assumed that the battery capacity decreases linearly for steady hovering flight. In high-maneuver 

flight, the battery capacity is expected to change non-linear due to the excess amperage draw 

from various motors. Nonetheless, this battery model focuses on expressing the time of 

endurance in terms of manufacturer specifications such as the battery capacity and battery 

current. Therefore, the time of endurance is  

 

 
𝑇𝑒𝑛𝑑 =

𝐶𝑏 − 𝐶𝑚𝑖𝑛

𝐼𝑏

60

1000
  

3.41 

 

where the minimum battery capacity is denoted by Cmin. The minimum battery capacity is 

provided by the manufacturer and is determined based on the safety margin of the physical 

battery itself. In this specific application, the minimum battery capacity is determined to be 750 

mAh. However, a constraint is placed on the battery current as expressed in Equation 3.42. 

 

 𝐼𝑏 ≤ 𝐾𝑏𝐶𝑏  3.42 
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4 Results 

The flight simulator used for this system is based on a game engine known as Unity3D 

which incorporates the Nvidia PhysX engine to model rigid body dynamics. In addition, inputs to 

the simulation drive the flight controller of the quadcopter which is based on a linearized model 

in Simulink about the quadcopters hovering condition. Furthermore, the resultant torques and 

forces calculated from the flight controller are applied to the respective motor which drive the 

Unity3D simulation. It is important to note that complicated physical behavior such as ground 

effect, propeller tip losses, and motor windup are not incorporated into either the Nvidia PhysX 

engine or the simulation parameters. However, drag forces are included as part of the physics 

simulation provided by Unity3D whereas drag is not included as part of the 6-DOF quadcopter 

model. However, the fidelity of the rigid body dynamics from the PhysX engine is steady at 1000 

Hz.  

4.1 Flight Controller 

The flight controller utilizes best fit curves of the load test data presented in Table 3.4 to drive 

the simulation in Unity3D. Curve fit lines for the load test data are obtained through statistical 

models such as a regression line modeling expressed as 

 

 
𝑚 =  

𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

𝑛(∑ 𝑥2) − (∑ 𝑥)2
  

4.1 

 
𝑏 =  

(∑ 𝑦) − 𝑚(∑ 𝑥)

𝑛
. 

4.2 

 

In Equations 4.1 and 4.2, n is denoted as the data sample size, m is the slope of the regression 

line, and b is defined as the y-intercept of the regression model. It is important to note that a 

higher sample size will result in greater accuracy within the regression model. The current 

sample size used that is provided by the manufacturer is 8. The regression lines for the static 

thrust, current, and torque of a motor are plotted below and are illustrated in Figures 4.1, 4.2, and 

4.3, respectively.  
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Static thrust regression line:  

 𝑦 = 0.0161𝑥 − 11.0976  

 

Figure 4.1. Linear regression line for thrust. 

Current regression line:  

 𝑦 = 0.0356𝑥 − 30.9751  

 

Figure 4.2. Linear regression line for current. 
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Torque regression line:  

 𝑦 = 0.00033417𝑥 − 0.2347  

 

Figure 4.3. Linear regression line for torque. 

The regression models shown above provide uncertainties due to linear trends. A 

different approach which lowers the uncertainty is achieved by introducing a pure quadratic, 

least-squares curve fit regression model for the load test data of thrust, torque, and current. The 

aim of these models is to determine the thrust, torque, and current coefficients while utilizing a 

least squares fit. The model is based on a numerical method to solving a general regression 

model that incorporates given measurement vectors and predicted equations of the form y = Ax. 

The design variable x € Rn+1 minimizes e which is the sum of squared errors:  

 

 𝑒 = (𝑦 − 𝑦𝑝𝑟𝑒𝑑)
𝑇

(𝑦 − 𝑦𝑝𝑟𝑒𝑑) 4.3 

 𝑒 = (𝑦 − 𝐴𝑥)𝑇(𝑦 − 𝐴𝑥) 4.4 

 𝑒 = (𝑦𝑇 − 𝑥𝑇𝐴𝑇)(𝑦 − 𝐴𝑥) 4.5 

 𝑒 = 𝑦𝑇𝑦 − 𝑦𝑇𝐴𝑥 − 𝑥𝑇𝐴𝑇𝑦 + 𝑥𝑇𝐴𝑇𝐴𝑥 4.6 

 

By taking the derivative of the error equation with respect to the x variable and setting the 

equation equal zero while using the denominator convention, Equation 4.6 becomes: 
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 𝑑𝑒

𝑑𝑥
= −𝐴𝑇𝑦 − 𝐴𝑇𝑦 + 2𝐴𝑇𝐴𝑥 = 0. 4.7 

 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑦  4.8 

 𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦 4.9 

 

Equation 4.6 is known as the normal equation which is a convergence of the general regression 

model of a pure quadratic. The numerical solutions for the thrust, torque, and current coefficients 

are listed below in Table 4.1. 

Table 4.1. List of coefficients for thrust, torque, and current for least squares fit curve. 

Coefficient Value 

Kf 1.935969224275217e-07 

Ktor 8.392986377371305e-09 

Kiw 8.906404760621757e-10 

 

The resulting regression lines are plotted in Figures 4.4 - 4.6 for static thrust, torque, and current, 

respectively. These regression models are plotted against the load test data and compared to the 

linear models.  

Static thrust least squares, pure quadratic:  

 𝑦 = 1.93𝑒−07 ∗ 𝑅𝑃𝑀2.45  

 

Figure 4.4. Least squares regression line for static thrust. 
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Torque least squares, pure quadratic: 

 𝑦 = 8.39𝑒−09 ∗ 𝑅𝑃𝑀2.35  

 

Figure 4.5. Least squares regression line for torque. 

Current least squares, pure quadratic: 

 𝑦 = 8.91𝑒−10 ∗ 𝑅𝑃𝑀3.25  

 

Figure 4.6. Least squares regression line for current. 
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The following three Figures show all regression models for static thrust, torque, and current used 

to estimate the load test data provided by the manufactures. The figures include the linear 

regression lines, polynomial curve fit lines, least square curve fit lines, theoretical models, and 

the load test data for comparison. The theoretical model curves are derived in Section 3.4 and 

3.5.  

 

Figure 4.7. Regression lines for static thrust compared to theoretical and load test data. 

 

Figure 4.8. Regression lines for torque compared to theoretical and load test data. 
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Figure 4.9. Regression lines for current compared to theoretical and load test data. 

Upon comparing Figures 4.7, 4.8, and 4.9 to the load test data, it is evident that the least 

squares regression models are favorable rather than the theoretical calculations. For static thrust, 

the values are higher due to the lack of mechanical loss modeling for propeller and motor design. 

Theoretical models for current also lacked modeling for electrical losses throughout the 

propulsion system design. These unincorporated mechanical and current loss models provide 

higher values when compared to the load test data. Lastly, although the theoretical model lacks 

mechanical torque losses it compares closely to the least squares regression model for higher 

accuracy. An analysis was conducted to show the root mean square errors of all regression 

models are tabulated in Table 4.2, 4.3, and 4.4. 

Table 4.2. Thrust Root Mean Square Analysis (RSME) of predicted models. 

Regression Model Equation Form RSME 

Linear 𝑦 = 𝑚𝑥 + 𝑏 1.3894 

Polynomial 𝑦(𝑥) = y1𝑥𝑛 + y2𝑥𝑛
−

1+. . . +y𝑛𝑥 + y𝑛 + 1. 1.0052 

Least Squares 𝑦 = 𝑎𝑥𝑐 1.1296 

Theoretical 
𝑇 = 𝐶𝑇𝜌 (

𝜔

2𝜋
)

2

𝐷𝑃
4 

2.6999 
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Table 4.3. Torque Root Mean Square Analysis (RSME) of predicted models. 

Regression Model Equation Form RSME 

Linear 𝑦 = 𝑚𝑥 + 𝑏 0.0319 

Polynomial 𝑦(𝑥) = y1𝑥𝑛 + y2𝑥𝑛
−

1+. . . +y𝑛𝑥 + y𝑛 + 1. 0.0231 

Least Squares 𝑦 = 𝑎𝑥𝑐 0.0237 

Theoretical 
𝑄 = 𝐶𝑄𝜌 (

𝜔

2𝜋
)

2

𝐷𝑃
5 

0.0417 

 

Table 4.4. Current Root Mean Square Analysis (RSME) of predicted models. 

Regression Model Equation Form RSME 

Linear 𝑦 = 𝑚𝑥 + 𝑏 4.0723 

Polynomial 𝑦(𝑥) = y1𝑥𝑛 + y2𝑥𝑛
−

1+. . . +y𝑛𝑥 + y𝑛 + 1. 10.8334 

Least Squares 𝑦 = 𝑎𝑥𝑐 2.251 

Theoretical 
𝐼𝑚 =

𝑀𝐾𝑉0𝑈𝑚0

9.55(𝑈𝑚0 − 𝐼𝑚0𝑅𝑚)
+ 𝐼𝑚0 

12.7821 

 

4.2 Position Controller  

The flight controller for the vehicle includes various sub controllers to incorporate 

translational and rotational motion. The utilization of cascade P, PD, and PID controllers 

establish the sub controller design used to linearize the model. It is important to note that the 

controller is tuned based off the six degree-of-freedom model established for the quadcopter 

dynamics as shown in Table 3.2. The simulated and theoretical sequence of rotation is yaw-

pitch-role or 3-2-1 order. This is one conventional sequence for unmanned aerial vehicles. In 

addition, reference frames are used to establish these equations. Essentially, two pairs of motors, 

1-4 and 2-3 spin in opposite directions: one pair spin clockwise while the other pair spin 

counterclockwise, respectively. This allows for a reversed pitch on the corresponding propellers 

to always create thrust in the body frame of the quadcopter in the negative zb direction for all 

four propellers. Although this configuration makes the reaction moments on the body frame in 

the same direction, the signs are opposite to account for the direction of the angular velocity 

vector of the propellers. For the quadcopter to hover, or hold its position, the overall thrust 

generated by the motors needs to compensate for earth gravity. In addition, the sum of the 

torques produced by all four motors must converge to zero to adequately hold its position. To 

ascend and descend in altitude, the same balanced thrust generation must be equally increased or 

decreased to vary altitude. It should be noted that while the provided thrust from the propeller 

increases so does the overall body torques produced by the propellers, but the sum remains zero. 

If this sum is not equal to zero then the quadcopter is theoretically yawing, or changing its 

heading, depending on which motor speeds vary. To turn left and right, motor pairs 1-4 and 2-3 

need to increase rotational speed while motors 2-3 and 1-4 decrease in angular speed, 
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respectively. This creates an imbalance in torque on the vehicles body frame that effectively 

rotates the quadcopter along the zb body frame. The equations used to describe the motion of 

quadcopter are presented below. 

Table 4.5. Summary of quadcopter dynamics. 

Translational Kinematic Equations (3.1) 

 

 

Force Equations (3.2) 

 

 

Rotational Kinematic Equations (3.3) 

 

 

Moment Equations (3.4) 

 

 

 

It is important to note that the variables p, q, and r are given and are measured from 

onboard rate gyros, or IMU. The BNO055 absolute orientation sensor from Adafruit that was 

used for this project can output three-axis orientation data based on a 360-degree sphere, three-

axis of rotational speed in radians per second, and three-axis linear acceleration in meters per 

second squared. This sensor data is set at a sample rate of 100 Hz while other sensor data such as 

magnetic field strength vector and temperature sensor are 20 Hz and 1 Hz, respectively. Eulerian 

angles ψ, θ, and φ are calculated numerically through Simulink using the above equations. The 

variables Ix, Iy, and Iz correspond to the principal moment of inertia and are gathered from the 

inertia tensor used in the angular momentum equation. It should be noted that the products of 
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inertia in the inertia tensor are not convergent to zero for this quadcopter configuration due to 

unequal moment arm lengths for each motor; the inertia tensor is listed below in Table 4.6. 

Table 4.6. Inertia tensor used in 6-DOF system gathered from Creo Parametric 7.0. 

Inertia Tensor 

Ixx Ixy Ixz 2.907E4 -1.114E4 -6.292E3 

Iyx Iyy Iyz -1.114E4 4.939E4 -2.285E3 

Izx Izy Izz -6.292E3 -2.285E3 7.230E4 

 

To increase the stability of the flight controller, filtered derivative, output saturation, and 

anti-windup clamping methods are used. In general, the stability of linear time-invariant dynamic 

systems may have one or more states of equilibrium. An equilibrium state may be unstable if for 

small perturbations the system does not return back to equilibrium an diverges away. However, 

nonlinear systems may also have one or more equilibrium states, but each of them requires a set 

of local stability properties. It is important to note that the stability of the equilibrium state 

determines the stability of the overall system in a time-invariant system which has only one. The 

block diagram for the cascade controller design is shown in Figure 4.10.  

 

Figure 4.10. Cascade controller block diagram for quadcopter mode. 

It is important to note that the developed sub controller model is linearized about the quadcopters 

hovering conditions. The sub controller has an outer loop of position and an inner loop of 

velocity. The control task for this specific model is to select the proper gain values for each 

degree of freedom for each of the two loops. The gain value blocks are P(s) and are denoted by 

the green colored Simulink blocks. The gain values are tuned using the automated PID tuner 

provided by Simulink. This design technique is a major drawback due to having a controller 

linearization about only one operating condition. This is important since for any other flight 

conditions outside the linearized model will translate into inaccurate performance values. 

However, for low-speed flights, this technique is useful and acceptable since the quadcopter will 

be operating close to this condition. The gain values used are listed below in Table 4.7 and 4.8. 
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Figures 4.11-4.13 show the desired yaw, pitch, and roll plots that were achieved with the tuned 

gain values shown in Table 4.6, respectively.  

Table 4.7. Controller tuned gained values for X, Y, and Z position. 

Symbol Description X Y Z 

Pouter Outer loop proportional gain constant 0.2168 0.5225 3.0223 

Iouter Outer loop integral gain constant 0.0285 0.0023 1.1817 

Douter Outer loop derivative gain constant 0 -0.2812 0.0 

Nouter Outer loop filtered coefficient constant 0 0.1857 0.0 

Pinner Inner loop proportional gain constant -0.0537 0.0643 12.228 

Iinner Inner loop integral gain constant -0.3423 0 0.0 

Dinner Inner loop derivative gain constant -0.2111 0 0.0 

Ninner Inner loop filtered coefficient constant 26.84 0 0.0 

Shigh Outer loop saturation upper limit 2.0 1.0 2.0 

Slow Outer loop saturation lower limit -2.0 -1.0 -2.0 

SDhigh Inner loop saturation upper limit 0.5950 0.5950 60 

SDlow Inner loop saturation lower limit -0.5950 -0.5950 0.0 
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Table 4.8. Controller tuned gain values for Pitch, Yaw, and Roll. 

Symbol Description Pitch Yaw Roll 

Pouter Outer loop proportional gain constant 2.7498 7.2731 3.7564 

Iouter Outer loop integral gain constant 0.0601 0.4407 0.1134 

Douter Outer loop derivative gain constant -0.4106 -0.1018 -0.3834 

Nouter Outer loop filtered coefficient constant 3.4233 6.6355 4.6655 

Pinner Inner loop proportional gain constant 1.1404 9.4157 0.6639 

Iinner Inner loop integral gain constant 6.1980 0.0 4.4882 

Dinner Inner loop derivative gain constant 0.0335 0.0 0.0126 

Ninner Inner loop filtered coefficient constant 53.895 0.0 49.268 

Shigh Outer loop saturation upper limit 0.5950 0.1700 0.5950 

Slow Outer loop saturation lower limit -0.5950 -0.1700 -0.5950 

SDhigh Inner loop saturation upper limit 5 5 5 

SDlow Inner loop saturation lower limit -5 -5 -5 

 

 

Figure 4.11. Desired yaw response that was achieved with the tuned gain values. 
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Figure 4.12. Desired pitch response that was achieved with the tuned gain values. 

 

Figure 4.13. Desired roll response that was achieved with the tuned gain values. 

4.3 Discussion  

The overall performance of the hardware is a limiting factor to the simulation of the flight 

controller as mentioned in Section 2.2. Hardware limitations for the motor drive system such as 

the electronic speed controller hinder the output performance of both the single board computers 

such as the frequency and response times. The ESCs are at a fixed frequency of 50 Hz where 

reconfiguring is not possible without effectively replacing the component entirely. The highest 

frequency that the flight controller can operate at for increased accuracy with the current 

configurations is 100 Hz which is double that what the ESCs are operating at.  

4.4 Future Research 

The modeled flight controller and experimental results are based on the first iteration of the 

electric quadcopter vehicle. This vehicle design only incorporates the hardware discussed in 

section 2.2 whereas future considerations involve higher performing single board computers and 

a more sophisticated sensor suite. The Nvidia Jetson Nano is to be replaced by an Nvidia Jetson 

AGX Xavier which has higher processing power and is better optimized for machine learning. 

When compared, the Jetson AGX Xavier has an enhanced 512-core Volta graphical processing 

unit (GPU) that includes tensor cores and an 8-core ARM 64-bit CPU for increased processing. 

In addition, the storage capacity is significantly increased from 8 GB to 32 GB for onboard 

storage allocation. However, the size of the AGX Xavier is significantly larger at 105 x 105 x 65 

millimeters when compared to the Jetson Nano. Nonetheless, the Nvidia Jetson AGX Xavier is 

essentially an AI computer for autonomous applications where it provides enhanced GPU 



49 

 

workstation performance in an embedded hardware module for under 30 Watts of power. In 

addition to the 30-Watt module, a 15-Watt light detection and ranging (Lidar) system will be 

incorporated. Essentially, the lidar sensor creates a virtual map of the environment that consists 

of both static and dynamic objects for a translating vehicle to navigate throughout a variety of 

environmental and lighting conditions safely and accurately. However, due to the massive 

amounts of power consumption between these two new modules in future iterations, the addition 

of a new battery for independent use may be needed. An increased power consumption results in 

a decreased flight time and power to weight ratio. Nonetheless, a similar analysis that compares 

theoretical and experimental modeling results through statistical regression will be conducted 

with the new components.  
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6 Appendix A 

 
% AE 295B MSAE Project 

% Analysis of a Racing Quadcopter 

% Description: Script develops output values for theoretical 

quadcopter performance flight characteristics.  

% Author: Brayan Mendez 

  

close all, clear all, clc 

  

%% Manufacturer Load Test Data 

  

% Throttle values for 1380 Kv motor, percent value  

Throttle = [30 40 50 60 70 80 90 100]; 

  

% Voltage values for 1380 Kv motor, measured in Volts 

Voltage = [20.0 20.0 20.0 20.0 19.9 19.9 19.8 19.8]; 

  

% Current values for 1380 Kv motor, measured in Amps 

Current = [2.8 4.5 8.1 10.9 17.5 25.7 34.9 43.7]; 

  

% Rotor velocity for 1380 Kv motor, measured in rev/min 

RPM = [7681 9128 11195 12590 14345 15991 16550 

18820]/9.5492965964254; 

Rps = RPM/0.10472; % measured in radians per second 

  

% Thrust values for 1380 Kv motor, measued in Newtons 

Thrust = [.315 .507 .708 .865 1.152 1.500 1.942 2.178]*9.81; 

  

% Input Power for 1380 Kv motor, measured in Watts 

PowerIn = [56.00 90.00 162.00 218.00 348.25 511.43 691.02 

865.26]; 

  

% Thrust efficieny values for 1380 Kv motor, measured in 

grams/watts 

ThrustEff = [5.63 5.63 4.37 3.97 3.31 2.93 2.81 2.52]; 

  

% Torque values for 1380 Kv motor, measured in N-m 

Torque = PowerIn./(RPM); 

  

%% Propeller Modeling 

  

% Constants for propeller modeling obtained from relevant 

literature 

rho = 1.225; % Density at sea level 

gamma = 0.9; % correction coefficient 
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alpha0 = 0; % zero lift angle 

epsilon = 0.85; % correction factor from downwash  

zeta = 0.6; % propeller parameter 

K0 = 6.28; % lift gradient 

C_fd = 0.02; % zero-lift drag coefficient 

A = 8.89; % Aspect Ratio 

e = 0.9; % oswald factor 

  

% Propeller Dimensions and Constants 

c = 0.02; % chord length in meters 

Dp = 0.1778; % diameter in meters 

Hp = 0.1016; % propeller pitch in meters 

Bp = 3; % number of blades 

  

% Average rotor linear velocity 

U = (pi*zeta*Dp.*RPM)/60; % air speed of the blade 

  

% Blade area 

S = (Bp/2)*gamma*Dp*c;  

  

% Pitch/blade angle 

theta = atan(Hp/(pi*Dp)); 
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% Absolute angle-of-attack 

alpha_ab = epsilon*theta;  

  

% Lift coefficient  

cl = (K0*alpha_ab)/(1+(K0/(pi*A)));  

%cd = C_fd + ((pi*A*K0^2)/(e))*((epsilon*atan(Hp/(pi*Dp))-

alpha0)/((pi*A)-K0)^2); 

  

% Drag coefficient 

cd = C_fd+((cl^2)/(pi*A*e)); 

  

% Torque Coefficient 

CQ = (1/(8*A))*(pi^2)*cd*(zeta^2)*gamma*(Bp^2); 

%Q = (1/4)*rho*Bp*cd.*(U.^2)*S*(Dp); 

  

% Thrust Coefficient 

CT = 

((1/4)*(pi^3)*gamma*(zeta^2)*Bp*K0)*(((epsilon*atan(Hp/(pi*Dp)))

)/((pi*A)+K0)); 

  

% Calculation of Thrust (N) and Troque (N-m) 

T = (CT*rho.*((RPM/(2*pi)).^2)*(Dp^4)); % Thrust 

Q = CQ*rho.*((RPM./(2*pi)).^2)*(Dp^5);  % Torque 

  

%% Electric Motor Model 

  

% Motor constants obtained from manufacturer specifications 

Im0 = 0.95; % amps, no-load current 

Um0 = 10; % volts, no-load supply voltage 

Rm = 0.06953; % ohms, internal resistancew = RPM; 

Kv = 1380; 

w = RPM; 

  

% M = Torque, (propeller torque = motor mechanical torque) 

M = Q; 
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%M = (PowerIn*60)./(2*pi.*RPM); 

  

% Back-electromotive force constant 

KE = (Um0-Im0*Rm)/(Kv*Um0); 

  

% Calculating equivalent motor input current and equivalent 

supply voltage 

Um = Rm*(((M*Kv*Um0)/(9.55*(Um0-Im0*Rm)))+Im0)+((Um0-

Im0*Rm)/(Kv*Um0))*w; % Equivalient supply voltage 

%U_m = KE*w+Im*Rm; 

  

Im = ((M*Kv*Um0)/(9.55*(Um0-Im0*Rm)))+Im0; % Equivalent motor 

input current 

  

%% ESC Modeling 

  

%ESC constants obtained from manufacturer specifications 

Ub = Voltage; % battery voltage measured in volts 

Ib = Current; % battery current measured amps 

Rb = (Ub-Um)/Im; % battery resistance measured in Ohms 

Re = (Ub-Um)/Current; % esc resistance measured in Ohms 

  

% Duty cycle measured in percent  

Dc = (Um +Im*Re)/Ub; 

  

% Supplied current measured in Amps 

Ie = Dc*Im; 

  

% Supplied voltage measured in Volts 

Ue = Ub-(Ie-Im)*Rb; 

  

figure() 

plot(RPM,Ie) 

hold on 

plot(RPM,Ue) 

  

%% Battery Modeling 

Cb = 5000; % battery capacity measured in mAh 

Cmin = 750; % min battery capacity due to safety margin, 

measured in mAh 

Kb = 100; % maximum discharge rate, measured in C 

% Ib is the battery current measured in Amps 

  

for Ib = Current 

    if Ib <= Kb*Cb 

        T_end = ((Cb-Cmin)/Ib)*(60/1000); % measured in minutes 
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    end 

end 

  

%% Regression Line Modeling  

  

% Constants Derived from Hardware 

  

kv = 1380; % motor speed constant 

k_torque = 60.0/ (2*pi*kv); % torque coefficient 

%fprintf("k_torque = %d \n", k_torque) % Nm/A 

  

ThrottlePercent = [30, 40, 50, 60, 70, 80, 90, 100]; % Throttle 

Percent/PWM Max 

omega = [7681, 9128, 11195, 12590, 14345, 15991, 16550, 

18820]*2*pi/60; % Rad/sec 

StaticThrust = [0.315, 0.507, 0.708, 0.865, 1.152, 1.500, 1.942, 

2.178].*9.81; % N 

Current = [2.8, 4.5, 8.1, 10.9, 17.5, 25.7, 34.9, 43.7]; % A 

  

%% Solve for thrust coefficient, curve fit 

  

% Least Squares Curve Fit Pure Quadratic, Thrust 

  

%F = k_f.*omega.^2.45; 

factor_kf = 2.45; 

k_f = StaticThrust / omega.^factor_kf; 

  

% Polynomial curve fit, Thrust 

  

x1 = omega; 

y1 = Thrust; 

  

coefs1 = polyfit(x1,y1,2); 

curve_thrust = polyval(coefs1,x1); 

  

% Linear Regression Curve Fit 

  

n = 8; 

x = omega; 

y = Thrust; 

  

sum_xy = sum(x(:).*y(:)); 

sum_x = sum(x(:)); 

sum_y = sum(y(:)); 

sum_x_squared = sum((x(:)).^2); 

squared_sum_x = sum(x(:)).^2; 
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m_thrust = (n*sum_xy-(sum_x*sum_y))/(n*sum_x_squared-

squared_sum_x); 

b_thrust = (sum_y-m_thrust*sum_x)/n; 

  

y_thrust = m_thrust*omega + b_thrust; 

  

figure 

plot(omega,y_thrust) 

hold on 

plot(omega, Thrust) 

hold on 

plot(omega,T) 

hold on 

plot(omega,k_f*omega.^factor_kf) 

hold on 

plot(x1,curve_thrust) 

hold off 
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xlabel('Omega (rad/sec)') 

ylabel('Thrust(N)') 

title('Thrust vs Omega Regression Line') 

legend('Regression', 'Load Test Data', 'Theoretical','Least 

Squares','Polynomial Curve Fit') 

%% Solve for throttle percent coefficient, curve fit 

  

% Least Squares Curve Fit Pure Quadratic, Throttle Percent 

  

% Throttle = k_throttle*omega^1.3 

factor_kt = 1.3; 

k_throttle = ThrottlePercent/ omega.^factor_kt; 

  

% Polynomial curve fit, Throttle 

  

x2 = omega; 

y2 = Throttle; 

  

coefs2 = polyfit(x2,y2,2); 

curve_throttle = polyval(coefs2,x2); 

  

figure 

plot(x2,y2,'r',x2,curve_throttle) 

hold on 

plot(omega, k_throttle.*omega.^factor_kt) 

hold off 

  

xlabel("Omega (rad/sec)") 

ylabel("Throttle Percent (%)") 

title('Throttle Percent vs Omega') 

legend('Load Test Data','Ploynomial Curve Fit','Least Squares 

Curve Fit Pure Quadratic') 
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%% Solve for torque coefficient, curve fit  

  

% Least Squares Curve Fit Pure Quadratic, Torque 

  

% Torque = k_torque*omega^1.3 

factor_ktor = 2.35; 

k_tor = Torque/ omega.^factor_ktor; 

  

% Polynomial curve fit, Torque 

  

x3 = omega; 

y3 = Torque; 

  

coefs3 = polyfit(x3,y3,2); 

curve_torque = polyval(coefs3,x3); 

  

% Linear Regression Curve Fit, Torque 

  

x2 = omega; 

y2 = Torque; 

  

sum_xy2 = sum(x2(:).*y2(:)); 

sum_x2 = sum(x2(:)); 

sum_y2 = sum(y2(:)); 

sum_x_squared2 = sum((x2(:)).^2); 

squared_sum_x2 = sum(x2(:)).^2; 

  

m_torque = (n*sum_xy2-(sum_x2*sum_y2))/(n*sum_x_squared2-

squared_sum_x2); 

b_torque = (sum_y2-m_torque*sum_x2)/n; 

  

y_torque = m_torque*omega + b_torque; 

  

figure 

plot(omega,y_torque) 

hold on 

plot(omega,Torque) 

hold on  

plot(omega,Q) 

hold on  

plot(omega, k_tor.*omega.^factor_ktor) 

hold on 

plot(x3,curve_torque) 

hold off 

  

xlabel('Omega (rad/sec)') 

ylabel('Torque(Nm)') 
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title('Torque vs Omega Regression Line') 

legend('Regression', 'Load Test Data', 'Theoretical','Least 

Squares Curve Fit Pure Quadratic','Polynomial Curve fit') 

  

%% Solve for current coefficient, curve fit  

  

% Least Squares Curve Fit Pure Quadratic, Current  

  

%Current = k_iw*omega^1 

factor_k_iw = 3.25; 

k_iw = Current/(omega.^factor_k_iw); 

  

%fprintf("k_iw = %d \n", k_iw) 

  

% Polynomial curve fit, Current 

  

x4 = omega; 

y4 = Thrust; 

  

coefs4 = polyfit(x4,y4,2); 

curve_current = polyval(coefs4,x4); 

  

% Linear Regression Curve Fit, Current 

  

x1 = omega; 

y1 = Current; 

  

sum_xy1 = sum(x1(:).*y1(:)); 

sum_x1 = sum(x1(:)); 

sum_y1 = sum(y1(:)); 

sum_x_squared1 = sum((x1(:)).^2); 

squared_sum_x1 = sum(x1(:)).^2; 

  

m_current = (n*sum_xy1-(sum_x1*sum_y1))/(n*sum_x_squared1-

squared_sum_x1); 

b_current = (sum_y1-m_current*sum_x1)/n; 

  

y_current = m_current*omega + b_current; 

  

figure 

plot(omega,y_current) 

hold on 

plot(omega,Current) 

hold on  

plot(w,Im) 

hold on 

plot(omega, k_iw.*omega.^factor_k_iw) 
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hold on  

plot(x4,curve_current) 

hold off 

  

xlabel('Omega (rad/sec)') 

ylabel('Current(A)') 

title('Current vs RPM Regression Line') 

legend('Regression', 'Load Test Data', 'Theoretical','Least 

Squares','Polynomial Curve Fit') 

  

%% Residuals and Root-Mean-Square-Error (RMSE) 

  

% Residuals 

  

% Thrust 

ai_thrust = Thrust; % Actual values from load test data 

pi_thrust = T; % predicted values from theoretical results 

pj_thrust = y_thrust; % predicted values from regression models 

pk_thrust = k_f*omega.^factor_kf; % predicted values from least 

squares 

pl_thrust = curve_thrust; % predicted values from polynomial 

  

ei_thrust = mean((ai_thrust - pi_thrust).^2); % mean squared 

Errors 

ej_thrust = mean((ai_thrust - pj_thrust).^2);  

ek_thrust = mean((ai_thrust - pk_thrust).^2); 

el_thrust = mean((ai_thrust - pl_thrust).^2); 

  

% Current 

ai_current = Current; % Actual values from load test data 

pi_current = Im; % predicted values from theoretical results 

pj_current = y_current; % predicted values from regression 

models 

pk_current = k_iw*omega.^factor_k_iw; % predicted values from 

least squares 

pl_current = curve_current; % predicted values from polynomial 

  

ei_current = mean((ai_current - pi_current).^2); 

ej_current = mean((ai_current - pj_current).^2);  

ek_current = mean((ai_current - pk_current).^2); 

el_current = mean((ai_current - pl_current).^2); 

  

% Torque 

ai_torque = Torque; % Actual values from load test data 

pi_torque = Q; % predicted values from theoretical results 

pj_torque = y_torque; % predicted values from regression models 

pk_torque = k_tor*omega.^factor_ktor; 



62 

 

pl_torque = curve_torque; % predicted values from polynomial 

  

ei_torque = mean((ai_torque - pi_torque).^2); 

ej_torque = mean((ai_torque - pj_torque).^2);  

ek_torque = mean((ai_torque - pk_torque).^2);  

el_torque = mean((ai_torque - pl_torque).^2); 

  

% RSME thrust 

  

RMSE_Thrust_theoretical = sqrt(ei_thrust); 

RMSE_Thrust_regression = sqrt(ej_thrust); 

RMSE_Thrust_leastsquares = sqrt(ek_thrust); 

RMSE_Thrust_polynomial = sqrt(el_thrust); 

  

% RSME Current 

  

RMSE_Current_theoretical = sqrt(ei_current); 

RMSE_Current_regression = sqrt(ej_current); 

RMSE_Current_leastsquares = sqrt(ek_current); 

RMSE_Current_polynomial = sqrt(el_current); 

  

% RSME Torque 

  

RMSE_Torque_theoretical = sqrt(ei_torque); 

RMSE_Torque_regression = sqrt(ej_torque); 

RMSE_Torque_leastsquares = sqrt(ek_torque); 

RMSE_Torque_polynomial = sqrt(el_torque); 

  

 

%% Flight Test Data Log1 

  

%type Log1.txt; 

  

Log1 = readmatrix('Log1.txt'); 

  

roll_desired = Log1(:,8); 

pitch_desired = Log1(:,9); 

yaw_desired = Log1(:,10); 

  

roll_imu = Log1(:,11); 

pitch_imu = Log1(:,12); 

yaw_imu = Log1(:,13); 

  

x_position_des = Log1(:,14); 

y_position_des = Log1(:,15); 

z_position_des = Log1(:,16); 
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x_position_est = Log1(:,17); 

y_position_est = Log1(:,18); 

z_position_est = Log1(:,19); 

  

TM1 = Log1(:,20); 

TM2 = Log1(:,21); 

TM3 = Log1(:,22); 

TM4 = Log1(:,23); 

  

RPM1 = Log1(:,24); 

RPM2 = Log1(:,25); 

RPM3 = Log1(:,26); 

RPM4 = Log1(:,27); 

  

I1 = Log1(:,32); 

I2 = Log1(:,33); 

I3 = Log1(:,34); 

I4 = Log1(:,35); 

  

TQ1 = Log1(:,36); 

TQ2 = Log1(:,37); 

TQ3 = Log1(:,38); 

TQ4 = Log1(:,39); 

  

time_recorded = Log1(:,3)/1E9; 

timestep =Log1(:,7); 

  

figure() 

plot(timestep,roll_imu) 

hold on 

plot(timestep,roll_desired) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Roll (deg)') 

title('Desired vs IMU Roll Response') 

legend('IMU','Desired') 

axis([40 80 -40 40]) 

  

figure() 

plot(timestep,pitch_imu) 

hold on 

plot(timestep,pitch_desired) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Pitch (deg)') 
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title('Desired vs IMU Pitch Response') 

legend('IMU','Desired') 

axis([40 80 -40 40]) 

  

figure() 

plot(timestep,yaw_imu) 

hold on 

plot(timestep,yaw_desired) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Yaw (deg)') 

title('Desired vs IMU Yaw Response') 

legend('IMU','Desired') 

axis([40 80 -0.8 0.8]) 

  

  

%% Flight Test Data Log2 

  

%type Log2_HighRPM.txt; 

Log2 = readmatrix('Log2_HighRPM.txt'); 

  

roll_desired1 = Log2(:,8); 

pitch_desired1 = Log2(:,9); 

yaw_desired1 = Log2(:,10); 

  

roll_imu1 = Log2(:,11); 

pitch_imu1 = Log2(:,12); 

yaw_imu1 = Log2(:,13); 

  

x_position_des1 = Log2(:,14); 

y_position_des1 = Log2(:,15); 

z_position_des1 = Log2(:,16); 

  

x_position_est1 = Log2(:,17); 

y_position_est1 = Log2(:,18); 

z_position_est1 = Log2(:,19); 

  

TM11 = Log2(:,20); 

TM21 = Log2(:,21); 

TM31 = Log2(:,22); 

TM41 = Log2(:,23); 

  

RPM11 = Log2(:,24); 

RPM21 = Log2(:,25); 

RPM31 = Log2(:,26); 

RPM41 = Log2(:,27); 
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I11 = Log2(:,32); 

I21 = Log2(:,33); 

I31 = Log2(:,34); 

I41 = Log2(:,35); 

  

TQ11 = Log2(:,36); 

TQ21 = Log2(:,37); 

TQ31 = Log2(:,38); 

TQ41 = Log2(:,39); 

  

time_recorded1 = Log2(:,3)/1E9; 

timestep1 =Log2(:,7); 

  

figure() 

plot(timestep1,roll_imu1) 

hold on 

plot(timestep1,roll_desired1) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Roll (deg)') 

title('Desired vs IMU Roll Response') 

legend('IMU','Desired') 

%axis([40 80 -40 40]) 

  

figure() 

plot(timestep1,pitch_imu1) 

hold on 

plot(timestep1,pitch_desired1) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Pitch (deg)') 

title('Desired vs IMU Pitch Response') 

legend('IMU','Desired') 

axis([40 80 -3E-4 3E-4]) 

  

figure() 

plot(timestep1,yaw_imu1) 

hold on 

plot(timestep1,yaw_desired1) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Yaw (deg)') 

title('Desired vs IMU Yaw Response') 
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legend('IMU','Desired') 

axis([40 80 -14E-4 14E-4]) 

  

figure() 

plot(timestep1,TM11) 

hold on  

plot(timestep1,TM21) 

hold on 

plot(timestep1,TM31) 

hold on 

plot(timestep1,TM41) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Force (N)') 

title('Force Response from each Motor') 

legend('TM1','TM2','TM3','TM4') 

  

figure() 

plot(timestep1,I11) 

hold on  

plot(timestep1,I21) 

hold on 

plot(timestep1,I31) 

hold on 

plot(timestep1,I41) 

hold off 

  

xlabel('Time (sec)') 

ylabel('Current (A)') 

title('Current Response from each Motor') 

legend('IM1','IM2','IM3','IM4') 

  

  
  
  
  
  
  
 

 

 


