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ABSTRACT 

 
 

LEVENBERG-MARQUARDT FILTER FOR ORBIT ESTIMATION 

 
 

By Robert Ziegler 

 

 

 

 

This paper tests the Levenberg-Marquardt method of least-squares as it is applied to orbit estimation 

using noisy Doppler data. Doppler data used in the analysis is simulated by calculating range rate at 

multiple points along the path of a satellite at times the satellite would pass over a real ground 

station. The paper begins by discussing how real Doppler data would be used for orbit estimation. 

Next, a reference frame used for the analysis is defined. Then, the methods used to acquire 

simulated data are outlined. Finally, the Levenberg-Marquardt least-squares algorithm is discussed 

in detail, and the results of the experiment are analyzed. It is determined that the Levenberg- 

Marquardt method of least-squares is an excellent filter for providing a “best estimate” of a state 

vector, and thus the orbit, of a satellite using Doppler data. 
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1. INTRODUCTION 

 

Orbit determination is a tool used by engineers, scientists, and hobbyists to understand the trajectory 

of objects travelling through space. Using orbital mechanics and observations of the position and 

velocity of the satellite, observers can predict the position of the object over time. While this 

prediction was problematic for the first satellite in space, technology now allows precise tracking of 

satellites using enhanced physical models and computing power. Presently, anyone with access to 

the internet can either look up the ephemeris of their desired satellite or download sophisticated 

software that can approximate and display the trajectory of many orbiting satellites; however, a 

different approach is proposed in this report. 

As more satellites are introduced into earth orbit, novel approaches to orbit determination are 

required. While satellites can send ephemeris data and computer software can approximate the 

position of the satellite over time, there must be alternative methods which do not rely on such 

technology. The subject of this report is the derivation of the orbital elements of a satellite using the 

relative velocity between the satellite and a ground station. This relative velocity will be measured 

through examination of radio frequencies from a satellite received at a ground station. Using a 

Damped Least-Squares (DLS) algorithm, noisy data received from an Earth-orbiting satellite will be 

corrected to find a “best estimate” for the true orbit of the satellite. Figure 1 illustrates how noisy 

measurement data can lead to an incorrect orbit. As seen in Figure 1, x variables represent state 

vectors along the reference orbit, and 𝒙̂  variables represent state vectors along an estimated orbit. 

The noisy data will be curve-fit to a reference orbit using the prescribed DLS algorithm. 
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Figure 1.1 Damped Least Squares Estimation [1]. 

 

 

1.1 DOPPLER ESTIMATION 

 

Many approaches have been taken to use Doppler data to predict the orbit of a satellite. Some of the 

simpler methods assume a circular orbit, while the more complex variations are flexible with orbital 

parameters but require more information on the orbital history of the satellite. In this section, texts 

and articles which discuss the Doppler effect DE, and how DE of a received signal pertains to orbit 

determination. 

As new equipment and software are introduced into space systems, testing these novelties in the 

field is critical. The analysis of the Precise Range and Range-rate Equipment (PRARE), a satellite 

tracking system, and how this system aids in precise orbit determination, presented by Bordi [2], is 

an example of such testing. 

Acting as a supplement to laser tracking, the PRARE system provides range and Doppler data of a 

satellite by sending two modulated signals, in X-band and S-band, respectively. This data is 

collected and compared at PRARE ground stations where observers use the time delay between X- 

and S-band signals to determine the ionospheric delay. Included in the signals are time data which is 
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used to acquire ephemeris data and allow tracking of future passes of the satellite. After processing, 

the X-band signal is modulated and sent back to the PRARE space segment where range 𝜌̇ 

measurements are calculated using the two-way signal time [2]: 

 

 
1 

𝜌̇ =  𝑐(𝛥𝑡 +  𝛥𝑡𝑐𝑜𝑟𝑟) −  𝛥𝜌̇𝑡𝑟𝑜𝑝  −  𝛥𝜌̇𝑖𝑜𝑛𝑜  +  𝜀 
2 

(1.1) 

 

 

 

where 𝛥𝑡 is the time measurement between transmission and reception of the signal, 𝛥𝜌̇ terms are 

corrections made for atmospheric delays, and ε is the errors made in observation. Due to the relative 

velocity between the satellite and ground stations, Doppler data is also collected during the signal 

exchange [2]. 

The PRARE system analyzes the Doppler frequency shift which results from the relative velocity 

between a satellite and a ground station. According to Bordi [2], this change in frequency is how 

PRARE calculates range-rate of the satellite. This method requires the measurement of two 

frequencies. The first measured frequency is of the received signal at the ground station per: 

 

 
𝜌̇𝑑  𝜌̇𝑑  

𝑓𝑟𝑔 = 𝑓𝑡𝑠 − 
𝜆 

= 𝑓𝑡𝑠 (1 − 𝑐 
), 

(1.2) 

 

 

 

where f is frequency, 𝜌̇  is the range-rate of the satellite with respect to the ground station, λ is the 

wavelength of the signal, and the subscripts, 𝑟𝑔 and 𝑡𝑠, represent signal received by the ground 

station and the signal transmitted by the PRARE space segment, respectively. The second necessary 

frequency is measured on the satellite per: 
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𝜌̇𝑢  𝜌̇𝑑  𝜌̇𝑢  
𝑓𝑟𝑠 = 𝑓𝑡𝑔 (1 − 𝑐 

) = 𝐾 · 𝑓𝑡𝑠 (1 − 𝑐 
) · (1 − 

𝑐 
), 

(1.3) 

 

 

 

where K is the constant factor of frequency transposure, and subscripts 𝑟𝑠 and 𝑡𝑔 represent the 

signals received by the satellite and transmitted by the ground station, respectively. The Doppler 

count, which is a measure of cycles in the signal, is found by integrating the differences between the 

signals found in Eqns. (1.1.2) and (1.1.3). Average range-rate is then calculated from the start and 

end of each integration interval, as in [2]: 

 

 
𝛥𝜌̇ 1   𝑁 +  𝑁𝑐𝑜𝑟𝑟 𝑐 

= ( ) + 𝜀, 
𝛥𝑡 2 𝛥𝑡 𝑓𝑟𝑒𝑓 

(1.4) 

 

 

 

where Δρ is the difference between ranges in the integration interval, N is the Doppler cycle count, 

and 𝑓𝑟𝑒𝑓 is the function 

 

 
 

𝑓𝑟𝑒𝑓 = 𝐾 · 𝑓𝑡𝑠 . (1.5) 

 

 

 

Throughout the remainder of Bordi’s [2] research, errors induced by various sources are discussed, 

and the methods used to correct these errors are explained. The analysis [2] relies on sophisticated 

hardware, but in other cases, orbit history of the satellite is used to predict the future orbit of the 

object. 

Using knowledge of the orbital history of a satellite, the study produced by Amiri and Mehdipour 

 

[3] presents a method to accurately measure the Doppler shift, regardless of the orbit of the satellite. 

 

Using known values for the position of the satellite 𝑃𝑠 and ground transceiver 𝑃𝑔, a relationship 
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between relative velocity 𝑣𝑡 and Doppler shift can be calculated (annotated from [3]): 
 

 

 
 

𝑓0𝑣𝑡 
𝛥𝑓 = 

𝑐 

(1.6) 

 

 

 

where 

 
𝑑(𝑃𝑠 − 𝑃𝑔) 

𝑣𝑡 = 
𝑑𝑡

 
(1.7) 

 

 

in spherical coordinates, and 𝑓0 is the carrier frequency. To find 𝑣𝑡, velocities of the satellite and 

ground station are studied in ECEF coordinates, and perturbing forces are analyzed. 

Finding a value for 𝑣𝑡 requires an orbit generator with corrections for the following perturbing 

forces R, S, and W (annotated from [3]): 

 

 
𝜸𝑝 = 𝑅𝒒𝒓 + 𝑆𝒒Ө + 𝑊𝒒𝒛 (1.8) 

 

 

 
 

𝐾 = −1.5 · 𝜇 · 𝐽 · 𝑅2 · 
1

 
2 𝐸 𝑟4 

(1.9) 

 

 

 
𝑅 = 𝐾(1 − 3 sin2(𝜔 + 𝜈) · sin2(𝑖)) (1.10) 

 

 

 
 

𝑆 = 𝐾 · sin(2( 𝜔 + 𝜈)· sin2(𝑖)) (1.11) 
 

 

 
 

𝑊 = 𝐾 · sin( 𝜔 + 𝜈) · sin(2𝑖) (1.12) 
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Gauss planetary equations can now be used to illustrate how orbit parameters of a satellite are 

influenced by these outside forces (annotated from [3]): 

 

 
𝑑𝑎 2 

=   (𝑒𝑅 sin(𝜃) + (1 + 𝑒 sin 𝜃) · 𝑆) 
𝑑𝑡 𝑛√1 − 𝑒2 

(1.13) 

 

 

 
 

 

𝑑𝑒 √1 − 𝑒2 
= (𝑅 sin 𝜃 + (cos 𝐸 + cos 𝜃) · 𝑆) 

𝑑𝑡 𝑛𝑎 

(1.14) 

 

 

 
𝑑𝑖 1 𝑟 

=   · · cos(𝜃 + 𝜔) · 𝑊 
𝑑𝑡 𝑛𝑎√1 − 𝑒2 𝑎 

(1.15) 

 

 

 
𝑑𝛺 1 𝑟 sin(𝜃 + 𝜔) 

=   · · · 𝑊 
𝑑𝑡 𝑛𝑎√1 −  𝑒2    𝑎 sin 𝑖 

(1.16) 

 

 

 
 

 

𝑑𝜔 √1 −  𝑒2 1 𝑑𝛺 
= · (−𝑅 cos 𝜃 + (1 + ) · 𝑆 sin 𝜃 − · cos 𝑖) 

𝑑𝑡 𝑛𝑎𝑒 1 + 𝑒 cos 𝜃 𝑑𝑡 

(1.17) 

 

 

 
𝑑𝑀 1 − 𝑒2 −2𝑒 1 

= 𝑛 + (𝑅 ( + cos 𝜃) − 𝑆 (1 + ) · sin 𝜃) 
𝑑𝑡 𝑛𝑎𝑒 1 + 𝑒 cos 𝜃 1 + 𝑒 cos 𝜃 

(1.18) 

 

 

 

Equation (1.13 – 1.18) decide if there is a known perturbing force vector. Analytical calculations 

will determine the orbital parameter rate of change. Using these forces with an orbit generator 

allows the derivation of 𝑣𝑡, and ultimately Δf, after a series of transformations to ECEF coordinates. 

In the next article, Doppler estimation is used for satellite identification. 

In February 2012, seven 1U CubeSats and two larger satellites were launched into orbit as part of a 
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student science endeavor. In orbit, the proximity of the satellites made individual identification 

difficult. To combat this issue, respective orbits were calculated by Marcin and Grzegorz [4] using 

the Doppler signal of the satellites. 

Unlike the previous methods, the measurements taken in by Marcin and Grzegorz [4] rely on 

Software Defined Radio (SDR) and a reference signal generator, as well as computer software 

which displayed orbital positions of the nine satellites. Over the course of five days, the satellite 

group passed over the ground station seven times, which allowed the collection of thirty downlink 

frequency measurements. With an assumed satellite frequency, Orbiton software is used to discern 

the desired satellite from the group. The next paper derives position over time of satellites using 

inclined circular orbits. 

In his paper, Tabakovics’s [5] objective is to find 𝜌̇  using trajectory coordinates of the satellite. As 

in the previous article, measurements are taken at a ground station receiver. Using longitude and 

latitude coordinates in the orbital plane, the trajectory of the satellite in circular inclined orbit can be 

stated as (annotated from [5]): 

 

 
𝑟𝑠 = 𝑅𝐸 + 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 (1.19a) 

 

 

 
 

𝜙 = 0 ; (1.19b) 
 

 

 
 

𝜆 = 𝜔𝑠 · 𝑡 + 𝜙0 (1.19c) 

 

 

 

where 𝑅𝐸 is the mean radius of the earth, 𝑅𝐸, 𝜙 and 𝜆 are longitude and latitude, respectively, and 

𝜔𝑠 is the angular velocity of the satellite. For azimuth and elevation measurements at ground 

stations, the coordinates from Eqns. (1.4.7) are transformed to the geocentric equatorial plane Earth 
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rotating coordinate system [5]: 
 

 

 
 

𝑟𝑠   = 𝑟𝑠 (1.20a) 

 
𝜙𝐸𝑅 = sin−1(sin 𝑖 · sin(𝜔𝑠 · 𝑡 + 𝜙0)) 

 
(1.19b) 

 
𝜆𝐸𝑅 = tan−1[cos 𝑖 · tan( 𝜔𝑠 · 𝑡 + 𝜙0)] + 𝛺 − 𝜃𝐺 − 𝜔𝑠 · 𝑡 + 𝑘𝜋 

 
(1.20c) 

 

 

 

Range-rate of a satellite can be found by differentiating the distance of the satellite [5]: 
 

 

 
 

1 

𝑟 = [(𝑋𝑠 − 𝑋𝑔)2 + (𝑌𝑠 + 𝑌𝑔)2 + (𝑍𝑠 − 𝑍𝑔)2]2 
 

 

 
 

= √𝑅2 + 𝑟2 − 2𝑅 𝑟 cos 𝛾 
𝐸 𝑆 𝐸  𝑆 

 

(1.21) 

 

 

 

where subscripts s and g represent satellite and ground station, respectively, and 𝛾 is the geocentric 

angle between the ground station and the satellite. Introducing an expression for maximum elevation 

𝛿𝑚 and differentiating the position vector, relative velocity can be obtained [5]: 
 

 

 
 

𝜌̇  = 
𝑑𝑟 

 
 

𝑑𝑡 
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𝑅  𝑟  sin[ 𝛿 + sin−1( 
𝑅𝐸 · cos 𝛿 )] sin[(𝜔 − 𝜔 · cos 𝑖)𝑡](𝜔 − 𝜔 · cos 𝑖) 

𝐸  𝑆 𝑚 𝑅𝐸 + 𝑟𝑆 
𝑚 𝑆 𝐸 𝑆 𝐸 

=    

√𝑅2  + 𝑅2 − 2𝑅  𝑟  sin[𝛿 + sin−1 ( 
𝑅𝐸 cos 𝛿 )] cos[(𝜔 − 𝜔 · cos 𝑖)𝑡] 

𝐸 𝐸 𝐸  𝑆 𝑚 𝑅𝐸 + 𝑟𝑆 
𝑚 𝑆 𝐸 

 
(1.20) 

 
 

 

Doppler shift can now be found using 𝜌̇  [5]: 
 

 

 
 

𝑓𝑡 
𝛥𝑓 = 𝜌̇  ∙ (− ) 

𝑐 

(1.21) 

 

 

 

where 𝑓𝑡 is the transmitted frequency of the downlink signal of the satellite, and c is the speed of 

light. Using Doppler measurements to improve global positioning system (GPS) performance is the 

topic of the next article. 

As aircraft maneuver through the air, the Doppler shift induced on received signals can be much 

greater than observed values at a ground station. In their investigation, Agostino, Manzino, and 

Marucco [6] use a Kalman filter estimator to improve GPS tracking of aircraft using Doppler 

measurements. In this process, a precise ephemeris of a satellite is used, along with the inherent 

Doppler shift to calculate the velocity of the aircraft. It is determined that using this Kalman filter 

estimation reduces errors caused by noisy measurements. 

In another experiment, Ialongo [7] uses a cycle counter to read two-way Doppler measurements and 

produce range rate of a satellite. This method feeds an input frequency 𝑓𝑖 into a counter, where 

 

 
5 

𝑓𝑖 = 
4 
𝑓𝑡 − 𝑓𝑟 

 

(1.22) 

 

 

 

An expression for range rate 𝜌̇  is derived from the two-way signal as [7]: 
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𝑅𝑅𝑁 − 𝐹(𝜃, 𝜙)

 1
 

𝜌̇  = 2  
1 − [𝑅𝑅𝑁 − 𝐹(𝜃, 𝜙)

 𝑐   
·
 1

 
2]   𝑐 

 

(1.23) 

 

 

 

where 

 
𝑐𝑁2 

𝑅𝑅𝑁 = 
2048𝑁2 + 26240𝑁1 

(1.24) 

 

 

𝑁1 and 𝑁2 are cycle counts, and 
 

 

 
 

(𝑅𝑡𝑣𝑡 + 𝜌̇𝑡𝑣𝑡 sin 𝜃 − 𝜌̇𝑡𝑣𝑠 cos 𝜙) 
𝐹(𝜃, 𝜙) = 

𝑅𝑡𝑣𝑡 

(1.25) 

 

 

 

Here, 𝜌̇ is the distance travelled by the signal. 

 

In this section, methods of measuring the Doppler effect and range rate of a satellite were discussed. 

Now, applications to orbit determination will be examined. 

 

 
1.2 ORBIT DETERMINATION FROM DOPPLER DATA 

 

Having covered a variety of methods used to measure the Doppler shift inherent in satellite 

communication, orbit determination schemes which use this data are presented in this section, 

starting with a simple circular orbit-based algorithm. 

The experiment presented by Schuch [8] uses observations of the orbital period τ of a satellite to 

estimate a circular orbit. Using Doppler measurements, a Time of Closest Approach (TCA) is 

determined by finding when the received frequency from a satellite is equal to the transmitted 



11  

frequency, that is, when there is no Doppler shift present. Noting the TCA, a second pass is 

evaluated, and a first estimation of τ can be made. The error incurred from the rotation of the earth is 

corrected by repeating this process for two successive descending passes. The time elapsed between 

these passes is an integer multiple of τ. This integer can be calculated with the equation (annotated 

from [8]): 

 

 
𝑛𝜏 

𝑛 = 𝑖𝑛𝑡 ( ) 
𝜏𝑒𝑠𝑡 

(1.26) 

 

 

 

where 𝜏𝑒𝑠𝑡 is the first estimation of orbital period. Because the orbit in this example is assumed to be 

circular, Keplerian elements, which are detailed in Chapter 2, can be found from [8]: 

 

 
 

√
4𝜋2𝑟3 

𝜏 = . 
𝐺𝑀 

(1.27) 

 

 

 

The system presented by Kirschner, et. al [9] uses six tracking measurements consisting of a 

combination of range and Doppler data. A homotopy continuation method is used to solve a set of 

nonlinear equations. This method can be used when little or nothing is known about the orbit. Range 

and Doppler data are processed in Tracking and Data Relay Satellites (TDRSs). Using preliminary 

orbit determination, this process is precise enough to determine trajectory of future passes. The 

homotopy continuation method uses a mapping parameter to step through a solution curve in seven- 

dimensional space, which produces a set of orbital parameters [9]. 

In another study, Izsak [10] extracted Doppler measurements simultaneously from three ground 

stations. Using the Doppler data from these three stations, Izsak [10] found radial velocity of the 
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satellite with 
 

 

 
 

𝑓𝑟 
𝜌̇   = 𝑐 (1 − ) 

𝑓𝑡 

(1.28) 

 

 

If the distance between the satellite and each of the ground stations is known at two different times, 

the Keplerian orbit can be formed through methods which will be discussed in the next chapter. 

Moving to a higher earth orbit, an experiment performed by Estefan [11] uses differenced Doppler 

for elliptical orbiters. A method of orbit determination for high-orbit elliptical satellites, Very Long 

Baseline Interferometry (VLBI), is under investigation [11] for its ability to improve orbit accuracy. 

The problem with this process is its high cost. Termed “quasi-VLBI,” an alternative differenced 

(two-way minus three-way) Doppler is proposed. While data measured with differenced Doppler is 

not as accurate as seen with VLBI, Doppler and range data can be supplied much faster for 

navigation purposes [11]. 

Differenced Doppler first relies on extracting range measurements from Orbit Analysis and 

Simulation Software (OASIS), which was developed at the Jet Propulsion Laboratory (JPL). Taking 

the time derivative of this range, range rate can be measured. Using downlink signals measured at 

three ground stations over the same period, a differencing of the signals is collected, as in the 

equation [11]: 

 

 
 

𝛥𝜌̇ (𝛥𝜌̇) = [𝜌̇1 𝑢(𝜌̇1𝑢) + 𝜌̇ 1𝑑(𝜌̇1𝑑)] − [𝜌̇1  𝑢(𝜌̇1𝑢) + 𝜌̇ 2𝑑(𝜌̇2𝑑)] 

= 𝜌̇1 𝑢(𝜌̇1𝑢) − 𝜌̇ 2𝑑(𝜌̇2𝑑) (1.31) 

 

 

 

 

where the subscripts u and d represent direction of the signal (uplink/downlink) and the numerical 
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subscripts represent different ground stations. 

 

Guier and Weiffenbach [12] use the entirety of a Doppler curve to obtain orbital elements in their 

article. While many Doppler-based orbit determination schemes include an intermediary process, 

steps can be taken to maximize Doppler data by directly calculating the six orbital elements from the 

frequency shift curve. Additional elements, totaling eight, are extracted to account for errors, such as 

refraction from the ionosphere. Although computational cost is higher using this single-pass method, 

its results have shown that such calculations are possible. The final article reviewed in the present 

chapter concerns the use of the Doppler effect in GPS measurements. 

The derivation of the GPS relativistic Doppler effects is given by Zhang, et. al [13]. In the GPS 

observation system, additional changes in frequency are present. These shifts are caused by gravity 

potential from the geoid shape of the earth, the gravity field of the earth, and the orbital eccentricity 

of the satellite. To correct the relativistic effects, a special relativity term is added to the equation for 

received frequency, which will not be included in this paper as these corrections are not desired for 

the present analysis. 

 
 

1.3 RESEARCH OBJECTIVES 

 

Sophisticated software has enabled aerospace companies to track satellites with accurate measure. 

For civilian satellite enthusiasts, there is also satellite tracking software, although these programs 

take a loss on accuracy. To mitigate this loss, observations of frequency shift from the transmitted 

radio signal of a satellite can be used to determine the orbital elements of the orbit. 

The primary objective of this report is to define an algorithm which uses range rate of a satellite 

with respect to a ground station to determine the orbital elements of the satellite. To do this, 

measurements of the signal received from the satellite will be taken as the satellite travels overhead. 

The collection of these frequency data points will form a Doppler curve which will be used to 
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calculate the range rate. A least-squares algorithm will then be introduced to an orbit generator for 

final orbit determination. 

In the next chapter, data will be extracted from the described orbit propagator. The data pulled will 

have contain the mentioned noise needing correction. The LMA will be used to eliminate the noisy 

data, and an orbit will be reproduced using the range-rate between the simulated orbiting object and 

a simulated ground station. 
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2. ORBITAL DETERMINATION FROM GROUND SITE OBSERVATIONS 

 

 

To establish the trajectory of an object through space, six independent state parameters are 

necessary. For example, the orbit of a satellite about the earth can be determined by the cartesian 

state vector, which gives x, y, and z components for the radial and velocity vectors. For this 

experiment, observable data will be calculated from the orbit propagated from a state vector. One of 

these observables, range rate, will be calculated using the Doppler signal from the satellites under 

investigation. For comparison, additional observables will be included in alternative test cases for 

this orbit determination problem. 

The present chapter discusses theory relevant to orbital determination using ground site 

observations. The first part of this chapter discusses the Julian Date system and sidereal time. These 

methods of timekeeping simplify later calculations. Next, the Earth-Centered Inertial reference 

frame is converted to a frame local to the surface of Earth. Then, the theory of orbital determination 

using the described independent quantities is discussed. Finally, because the trajectory of an object 

travelling through space can be altered by outside forces, orbital perturbations are briefly discussed. 

 
 

2.1 TIME MANAGEMENT 
 

As with most problems involving kinetics, time is a necessary component when determining the 

orbit of a satellite with observational data. Unlike the ubiquitous solar time, which tracks the 

movement of the Sun through the sky, universal time (UT) monitors the passage of the Sun through 

the meridian of Greenwich, London, where terrestrial longitude is defined as zero degrees. 

Measuring westward from the Greenwich meridian to the local meridian, local standard time in 

calculated by adding one hour per each time zone passed. 
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Like UT, local sidereal time is measured with respect to the meridian at Greenwich, London. 

Greenwich sidereal time is the time, in degrees, elapsed since the Greenwich meridian travelled 

through the vernal equinox multiplied by a factor of fifteen. Local sidereal time is calculated by 

adding longitude ϕ of the ground site to Greenwich sidereal time 𝜎𝐺, as in the equation [14] 

 

 
𝜎 = 𝜎𝐺 + 𝜙 (2.29) 

 

 

 

 

This Julian Date system is used to calculate Greenwich sidereal time. 

 

 

2.1.2 Julian Date System 

 
Just one year after the Gregorian calendar was introduced to the world [15], French-Italian 

astronomer and historian Joseph Scaliger proposed using the Julian period, later to be named the 

Julian Date system, facilitate time calculations [16]. Scaliger proposed that rather than having both 

BC and AD eras, there should be a temporal point of origin from which all time can be measured 

without the need for positive and negative dates. Because the earliest historical records of the time 

dated to the year 4713 BCE, Scaliger declared noon UT on January 1 of this year to be the 

beginning of the Julian Date system. 

To calculate the Julian day JD, it is necessary to find the Julian day number 𝐽0 at 0 hours UT [14]: 
 

 

 
 

7[𝑦 + 𝐼𝑁𝑇(𝑚 + 9)] 275𝑚 
𝐽0  = 367𝑦 − 𝐼𝑁𝑇 { 

4 
} + 𝐼𝑁𝑇 ( 

9 
) + 𝑑 + 1,721,013.5 

 

(2.30) 

 

 

where y is a year between 1901 and 2099, m is the numerical month, and d is the day of the month. 

 

Then, 
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𝑈𝑇 

𝐽𝐷  =  𝐽0  + 
24

 
(2.31) 

 

 

The next series of calculations are based on the current Julian epoch, which was noon on January 1, 

2000. Termed 𝐽2000, this epoch contains 2,451,545 Julian days. Additionally, because there are 

365.25 days in a Julian year, it is no surprise that a Julian century has 36,525 days. Time, therefore, 

can be found with 

 

 
𝐽0 − 2,451,545 

𝑇0   = 
36,525 

(2.32) 

 

 

where 𝑇0 is measured in Julian centuries between the Julian day 𝐽0 and 𝐽2000. The dimensionless 

time 𝑇0 can be used to find Greenwich sidereal time 𝜎𝐺0 at 0 hours UT with 

 

 
𝑈𝑇 

𝜎0  =  𝜎𝐺0 + 360.9856724 · 
24

 
(2.33) 

 

 

It is important to know that sidereal time must be in the range 0 ≤ 𝜎 ≤ 360. If a value is found 

outside of this range, an integer multiple of 360 must be added to or subtracted from the value to 

make it meet this criterion. 

 
 

2.2 DEFINING THE REFERENCE FRAME 

For this experiment, measurements will be taken using an orbit simulated in MatLab. The “truth” 

orbit will be propagated using a state vector calculated from the Two-Line Element (TLE) of each 

satellite. From this simulation, frequency shift shall be estimated based on the introduced orbit, as 
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well as a simulated ground station. 

 

 

2.2.1 Topocentric Coordinate System 

 
Due to the oblateness of the earth, a line emanating from the center of the earth will only be tangent 

to the surface at the equator and the poles; therefore, the topocentric coordinate system defined in 

this section will be used instead of the Earth-Centered, Inertial (ECI) frame, with directional vectors 

𝒆𝒄𝒙̂, 𝒆𝒄𝒚, and 𝒆𝒄𝒛, to facilitate later calculations. Referring to Figure 2.1, The topocentric coordinate 

system is centered at ground site S, which is a distance R from the center of the earth 𝐸𝐶0. At the 

site, the East North Up (ENU), or Topocentric Horizon, coordinate system is defined, where 𝒆𝒏𝒖𝒙̂, 

𝒆𝒏𝒖𝒚, and 𝒆𝒏𝒖𝒛 are directional vectors pointing North, East, and Zenith, respectfully [17]. 

 
As exaggerated in Figure 2.2, the shape of a cross-section of the earth is taken as an ellipse. In 

reality, this cross-section is an ellipsoid, but alterations can be made to equations for changes from 

the terrestrial elevation [17]. The angle between 𝒆𝒄𝒚 and R, is defined as geocentric latitude 𝜆𝑐. 

Because R is not parallel to Zenith, a secondary position vector 𝑹𝜆 perpendicular to the tangent at S 

is defined, with its origin 𝐸𝐷0 located on the polar axis. The angle created between 𝑹𝜆 and the 𝒆𝒄𝒚′ 

is called the geodetic latitude 𝜆𝑑. The terrestrial ellipse can be defined by semimajor 𝑅𝑒𝑞 and 

semiminor 𝑅𝑝 axes [17]. 
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Figure 2.1 Topocentric Coordinate System ([14] as adapted by [17]). 
 

 

 

 

 
 

 

Figure 2.2 Cross-section of the earth [17]. 

 

 
The oblateness and eccentricity of the earth are defined, respectively, by [14]: 
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𝑅𝑒𝑞  − 𝑅𝑝 

𝑓𝑜𝑏𝑙 = = 1 − √1 − 𝑒2 
𝑅𝑒𝑞 

(2.34) 

 

 

where the relation between e and 𝑓𝑜𝑏𝑙 is 
 

 

 
 

 
 

𝑒 = √2𝑓𝑜𝑏𝑙 − 𝑓2 
𝑜𝑏𝑙 

(2.35) 

 

 
 

The distance from 𝐸𝐶0 to 𝐸𝐷0 is 𝑅𝜆𝑒2 sin2 𝜆, where 𝑅𝜆 is defined as [14]: 
 

 

 
 

𝑅𝑒𝑞 𝑅𝑒𝑞 
𝑅𝜆 = = 

√1 −  𝑒2 sin2 𝜆 √1 − (2𝑓𝑜𝑏𝑙 − 𝑓2 ) sin2 𝜆 
𝑜𝑏𝑙 

 

(2.36) 

 

 

The position of S with respect to 𝐸𝐶0 can now be defined as [14]: 
 

 

 
 

𝑅 = (𝑅𝜆 + 𝐻) cos 𝜆 cos 𝜎 𝒆𝒄𝑥 + (𝑅𝜆 + 𝐻) cos 𝜆 sin 𝜎 𝒆𝒄𝑦 
 

+[(1 − 𝑓)2𝑅𝜆 + 𝐻] sin 𝜆 𝒆𝒄𝑧 

 

(2.37) 

 
 

where H refers to height of the ground station with respect to the reference ellipsoid. 

 

 
 

2.3 THE DOPPLER EFFECT 
 

The Doppler effect is a phenomenon that increases or decreases the observed frequency of a wave 

due to the relative velocity between the source of the wave and the observer. This frequency shift is 

most recognizable in the siren of a passing ambulance, but it can also occur in light and radio signal 

reception. Measuring the frequency of stellar light, astronomers can determine if a star is moving 



21  

with respect to the earth. Likewise, a received radio signal from an orbiting satellite will have a 

frequency shift, though steps are typically taken to correct this effect instantaneously. To attain a 

better understanding of the Doppler effect, the components of frequency are examined. 

The velocity of a wave 𝑉𝑤𝑎𝑣𝑒 from a stationary source can be measured in terms of wavelength λ 

and transmitted frequency 𝑓𝑡 with the equation 

 

 
𝑉𝑤𝑎𝑣𝑒 = 𝜆𝑓𝑡 (2.38) 

 

 

 

If the source has a relative velocity with respect to an observer, the observed frequency 𝑓𝑟 is shifted 

from 𝑓𝑡, as per the equation: 

 

 
𝑉𝑠𝑜𝑢𝑟𝑐𝑒 

𝑓𝑟   =  𝑓𝑡  (1 +  
𝑉 

) 
𝑤𝑎𝑣𝑒 

(2.39) 

 

 

if the source is moving at velocity 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 towards an observer, or 
 

 

 
 

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 

𝑓𝑟   =  𝑓𝑡  (1 −  
𝑉 

) 
𝑤𝑎𝑣𝑒 

(2.40) 

 

 

In the case of signal measured from a passing satellite, 𝑉𝑤𝑎𝑣𝑒 is hereby referred to as the speed of 

light c. 

With a simulated radio signal and an orbit propagator, equations (2.11) and (2.12) will be used later 

in this paper to determine the range-rate of the satellite. 
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2.4 ORBITAL PERTURBATIONS 
 

In a basic two-body problem where the center of mass is dominated by a massive spherical body, an 

unaltered orbit could be achieved by the secondary body, though, in reality, none of these 

assumptions hold true. Adding complexity to the two-body problem, there are four forces that alter 

the orbital elements of a satellite: third-body perturbations, perturbations due to non-spherical 

planet, atmospheric drag, and solar radiation pressure [18]. 

The first orbit influencing force, third-body perturbations, is caused by the sun and moon. These 

bodies induce periodic changes to each orbital element of the satellite. Additionally, secular 

variations are experienced by the longitude of the ascending node and the mean anomaly due to the 

gravitational presence of these bodies. 

The second force in this list is due to the ellipsoidal shape of the earth. While the planet is typically 

modelled as having a spherical shape, a better estimate shows that more mass is found along the 

equator, leaving a flattening effect at the poles. To accurately predict an orbit, zonal coefficients 𝐽𝑛 

are used to form a geopotential function. 

The oblateness of the earth dominates the geopotential expansion. In this expansion, the 𝐽2 term 

represents perturbations caused by this flattening. This force results in secular changes in the 

longitude of the ascending node and the argument of perigee [18]. 

The third orbit perturbing force is atmospheric drag. As a body moves through a fluid, momentum is 

lost from the body and imparted to particles in the fluid. This exchange of momentum causes a 

decrease in the velocity of the body. In the case of a satellite, a decrease in velocity means orbital 

decay. Fluctuations in atmospheric density are caused by varying solar activity. During periods of 

high solar activity, altitudes in the range of 500 – 800 km can have an atmospheric density around 

two orders of magnitude greater than seen during low solar activity [18]. 

The final force in this list is caused by solar radiation pressure. In the lower atmosphere, 
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atmospheric drag is the most influencing force on orbital elements, but at altitudes greater than 800 

km, solar radiation pressure becomes the greater force [18]. 



24  

3. ORBIT SIMULATION AND DATA ACQUISITION 

 

Paramount to the success of orbital determination is accurate data acquisition. While the data used 

for the present paper rely on a simulated orbit, realistic scenarios present errors which must be 

accounted for. The goal of this chapter is to provide the method used to calculate an accurate orbit 

using noisy data. Reasons for this method choice will be discussed, as well as corrections for the 

orbital perturbations outlined in the previous chapter. 

The first part of the chapter will give a brief history of statistical orbital determination (OD). Next, a 

discussion on how initial orbital data is obtained using MatLab software is given. The corrections 

used for orbital perturbations will be examined. To accurately predict the future location of an 

orbiting body, all perturbations mentioned in chapter 2 must be considered. After this, the sources of 

data error and the procedures used to reduce these errors will be explained. 

 
3.1 A BREIF HISTORY OF ORBITAL DETERMINATION 

 

While astronomers have contemplated motion through space for millennia, it wasn’t until Johannes 

Kepler (c.1610), a German mathematician, astronomer, and astrologer discovered that not all orbits 

are circular that true statistical OD began [14]. Kepler was a student of a wealthy astronomer, Tycho 

Brahe, whose beliefs placed Earth at the center of the universe. When asked by Brahe to determine 

the orbit of Mars, Kepler eventually discovered the elliptical shape of the orbit. Later, 

mathematicians would proceed with Kepler’s work to give OD a much more defined subject. 

The formulation of least-squares (LS) algorithms, discussed further in Section 3.3, was first 

imagined by Karl Friedrich Gauss, a German mathematician, in 1795. As with many discoveries, 

controversy ensued when French mathematician Adrien-Marie Legendre also discovered the method 

of LS and became the first to publish his findings in 1806 [19]. The idea would eventually be 
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attributed to Gauss, who published his own works for OD methods in 1809. While Gauss and 

Legendre were trying to figure out who discovered LS, another hallmark achievement was 

accomplished. 

In 1801, the Ceres comet was rediscovered after astronomers used observations to predict its 

location. This was the first time OD was used to locate an orbiting body [20]. Over next two 

decades, many mathematicians worked to refine the work done by Gauss and Legendre, though the 

Gaussian method is still widely used today. 

During the Cold War, the United States first used its ability to observe satellites through radio 

frequency when a Naval scientist, Richard Anderle, used the Doppler method to derive range-rate of 

the Sputnik I. After Sputnik II was launched, satellite tracking methods were refined further leading 

to modern orbit determination, to which Anderle is accredited. Study of the Sputnik satellites 

allowed improved estimates for 𝐽2 perturbations and the Earth’s gravitational field [20]. 

 

3.2 DATA ACQUISITION 

The data analyzed in this paper will be simulated using both the two-line element set (TLE) of a 

given satellite and MatLab software. Using an orbit propagator, the TLE set will be used to form an 

initial estimate for the orbit of a satellite. For this simulation, slant range-rate between the satellite 

and an input ground station will transformed to frequency-rate (Doppler shift) by rearranging the 

equation [2]: 

 

 
𝑓 = 𝑓 (1 − 

𝜌̇  
) 

𝑟 𝑡 𝑐 
(3.1) 

 

 

 

where: 
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𝑓𝑟 = the frequency received at the ground station 

 

𝑓𝑡 = the frequency transmitted from the satellite 

 

𝜌̇  = the line-of-sight (LOS) range-rate between the ground station and satellite 

c = the speed of light. 

 
 

Finally, 𝑓𝑟(𝑡) will be recorded from multiple passes to derive a new TLE set. Visibility windows 

will be calculated on a satellite to satellite basis, though passes with a low maximum elevation will 

be avoided. Additionally, because satellite tracking software (Gpredict) will be used for initial TLE 

sets and later for comparison, a simulated ground station will be present in both Gpredict and 

MatLab, using the longitude and latitude of San Jose State University for coordinates: 37.3352° N, 

121.8811° W. 

Because a real-life measurement of the Doppler shift would contain noise, the simulated orbit will 

have a Gaussian noise added. 

 
 

3.2.1 Sources of Error 

Due to the complexity of satellite communications, error sources are prevalent. According to [20], 

there are three main sources of data error: Instrument errors, measurement errors, and mathematical 

modeling errors. 

Instrument errors can be caused by the operator or hardware. For instance, if the operator should 

decide to record the pass of a satellite with a low maximum elevation, meaning a short pass just over 

the horizon, atmospheric distortion can induce large errors. Hydrometeors such as clouds and rain 

can also cause errors through attenuation of the signal [21]. Errors introduced from hardware can 

emanate from poorly maintained sensors or improper wiring [20]. 

Measurement errors are produced from biases, non-random time-varying errors (drift), and noise 
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[20]. Vallado and McClain [20] state biases are “a constant offset from the true value.” In 

astrodynamics, it is common enough to assume this bias is zero. Drift is known as a slow variation 

to data over time. The largest contributor to drift is clock instabilities in the satellite, which can be 

cause by temperature differentials [20]. Due to the short windows of visibility, drift will be 

negligible in the present study. Noise is a statistical indication, or standard deviation of varying data 

around the measured average. 

Noise errors can stem from several sources. The on-board oscillator can degrade accuracy of the 

Doppler shift measurements without short-term stability [22]. According to Bart Root (personal 

communication, 2018), a lecturer at the Delft University of Technology in Delft, Netherlands, this 

makes tracking smaller satellites (e.g., CubeSats) through one-way Doppler measurements difficult 

due to the cheap oscillators used. Additional sources of noise may stem from surface radio 

frequency (RF) emissions or other air/space vehicles. 

Mathematical modeling errors happen during data processing. This can mean incorrectly entered 

data, typos in coding, and general misunderstanding of data field (Bart Root, personal 

communication, 2018). The best way to avoid modeling errors is to take care in both data recording 

and coding. 

 
 

3.2.2 Two-Line Elements (TLEs) 

As mentioned in chapter 2, six elements are needed to accurately predict an orbit. While the present 

study focuses on the use of range-rate information supplied through Doppler data, initial knowledge 

of the location of the satellite is necessary, according to Gauss, who states in his book, Theoria 

Motus (as translated in [19]), “… this problem [of accurate OD] can only be properly undertaken 

when an approximate knowledge of the orbit has been already attained.” Gpredict, a real-time 

satellite tracking application, will be used to supply TLE data to MatLab to form an initial estimate 
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of an orbit for a given satellite. 

 

It is worth mentioning, to accurately simulate an orbit, for the purposes of this study, the orbital 

perturbations must be included in the simulation model. This requires a code that will factor in 

perturbing forces when numerically iterating an orbit. 

 

 
3.3 SOLUTION TO THE ORBIT DETERMINATION PROBLEM 

 

Algorithms to compute best fit in linear regression models are standard in most modern calculator 

software (e.g., Microsoft Excel, MatLab, etc.); however, when attempting to solve nonlinear 

systems, user work is required. The objective of the current paper is to find some trajectory 

equation, y = f(x), to model the orbit of a satellite. Gauss suggests this problem can be solved by 

finding the most probable values. Gauss writes in Theoria Motus (translated by [19]): 

… the most probable value of the unknown quantities will be that in which the sum 

of the squares of the differences between the actually observed and the computed 

values multiplied by numbers that measure the degree of precision is a minimum.” 

With this definition, Gauss was able to find a solution to non-linear systems. 

 

The study conducted in the present paper requires an algorithm which will minimize the sum of 

squares of the residuals in a data set. This section is dedicated to defining the non-linear LS solution 

to statistical OD. The majority of the information found in this section comes from Gavin [23] and 

Nash [24]. 

 
 

3.3.1 Finding a Least-Squares Algorithm 

Since Gauss and Legendre discovered the method for minimizing the sum of squares of equation 

residuals [23], 
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𝑁 

𝑆(𝒙̂) = ∑[𝑓𝑖(𝒙̂)]2 
𝑖=1 

 

(3.2) 

 

 

 

where N is the number of data points and x is a vector of parameters 𝑥𝑗, j = 1,2,3,…,n. The vector of 

residuals f is found by assembling the N functions 𝑓𝑖(𝒙̂), where i = 1,2,3,…,N, resulting in [24] 

 

 
𝑆(𝒙̂) = 𝒇𝑇𝒇. (3.3) 

 

 

 

Numerous mathematicians have made alterations to Gauss’s method for both better understanding of 

the problem and to decrease computational cost. 

Also known as the damped least-squares (DLS) method, the Levenberg-Marquardt algorithm 

(LMA) is one such modified algorithm that solves curve fitting problems. The LMA is a 

combination of the steepest descent method (also known as gradient descent method) and Gauss- 

Newton method. 

 
 

3.3.1.1 The Steepest Descent Method 

Suited for general minimization problems, in the steepest descent method (SDM), parameter values 

are updated in the “downhill” direction (i.e., towards the minimum). This method is best suited for 

problems with trivial objective functions [23]. Starting with the gradient 2v(x) of S(x), the SDM 

steps down along the gradient [24]. Using t, the step length along the step path, it is shown that 

 

 
𝑆(𝐱 − t𝐯) < 𝑆(𝒙̂) (3.4) 
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where 𝑆(𝒙̂) was defined in Eqn. (3.2). 
 

The SDM uses (𝐱 − t𝐯) in place of x and iterates forward from a new position. This process is 

carried on until a t no longer exists for Eqn. (3.4), at which point the operation has converged. 

 
 

3.3.1.2 The Gauss-Newton Method 

In the Gauss-Newton method (GNM), a sum-of-squares objective function is minimized. This 

method assumes the desired function is approximately quadratic near the optimal solution [23]. The 

GNM allows faster convergence than the gradient descent method when solving moderately sized 

problems. 

The GNM takes advantage of the fact that the gradient v(x) must be zero at the minimum. That’s to 

say, the functions 𝒗𝑗(𝒙̂), j = 1,2,3,…,m, create a nonlinear set of m functions with m unknowns x 

such that [24] 

 

 
𝒗(𝒙̂) = 0. (3.5) 

 

 

 

The solution to Eq. (3.5) lies on the local minimum or maximum of the function 𝑆(𝒙̂). Further 

analysis of Eqs. (3.2-3.3) suggests gradient components [24] 

 

 
𝑁 

2𝑣𝑗 (𝒙̂) = 2 ∑ 𝑓𝑖 (𝒙̂)𝛿𝑓𝑖 (𝒙̂)/𝛿𝑥𝑗 
𝑖=1 

(3.6) 

 

 

 

which leads to 
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𝑁 

𝑣𝑗(𝒙̂) = ∑ 𝑓𝑖(𝒙̂)𝐽𝑖𝑗(𝒙̂) 
𝑖=1 

(3.7) 

 

 

 

restated in matrix form as 
 

 

 
 

𝑱𝑇𝒒 = −𝒗 = −𝑱𝑇𝒇 (3.8) 
 

 

 

with Jacobian matrix J defined as 
 

 

 
 

Jij = δfi⁄δy 
𝐣 

(3.9) 

 

 

 

otherwise stated as 
 

 

 

perturbed state − actual state 
. 

amount this state was perturbed by 
 
 

 

Simplification of Eq. (3.5) is required; thus, an approximation must be made. To find this 

approximation the Taylor expansion of 𝑣𝑗(𝒙̂) about x is examined [24] 

 

 
∑𝑛 𝒒𝑘 δ𝒗𝑗(𝒙̂) 

𝑣  (𝒙̂ + 𝒒) =  𝑣 (𝒙̂) + 
𝑘=1 

+ (𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝒒2). 
𝑗 𝑗 δ𝒙̂𝒌

 

(3.10) 

 

 

 

Assuming 𝑣𝑗(𝒙̂ + 𝒒) is the solution, and thus equal to zero, and the terms 𝑞𝑘𝑞𝑗 in 𝑞2 are negligible, 

 
then 
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∑𝑛 𝑞𝑘 δ𝑣𝑗(𝒙̂) 
𝑘=1  

= −𝑣 (𝒙̂) 
δ𝑥𝑘  𝒋 

(3.11) 

 

 

 

for each element in j. Thus, incorporating Eqns. (3.7) and (3.9), 
 

 

 
 

 δ𝑣𝑗(𝒙̂) 
= ∑𝑁 [ 𝐽 (𝒙̂)𝐽 (𝒙̂) + 𝑓 (𝒙̂) 

𝛿2𝑓𝑖(𝒙̂) 
] 

δ𝑥𝑘 
𝑖=1 𝑖𝑘 𝑖𝑗 𝑖 δ𝑥𝑗δ𝑥𝑘

 

(3.12) 

 

 

 

The GNM iterates forward, using (x + q) in place of x and repeats the process until the value of q 

 

falls below a prescribed tolerance or 
 

 

 
 

𝑆(𝒙̂ + 𝒒) ≥ 𝑆(𝒙̂ ). (3.13) 
 

 

 

3.3.2 Marquardt’s Method 

Using both the gradient descent and Gauss-Newton methods, the LMA changes based on the value 

of an algorithmic parameter λ, as seen in the equation (adapted from [24]): 

 

 
( 𝑱𝑻𝑱 + λ𝑫𝟐)q = -𝑱𝑇𝒇 (3.14) 

 

 

 

where: 
 

 

 

𝐉𝐓 = transpose of J 

 

D = a diagonal matrix with positive diagonal elements 

 

f = column vector of residuals 
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q = vector of increments of x. 

 

 

The vector of residuals 𝐟 is defined as the difference between observed values 𝑦𝒐𝒊 and calculated 

values 𝑦𝒄𝒊 as seen in [24] 

 

 

𝑓𝑖(𝒙̂) = 𝑦𝒐𝒊 (𝑖, 𝒙̂𝒐𝒊 ) − 𝑦𝒄𝒊 
(3.15) 

 

 

 

where 𝒙̂𝒐𝒊 is the observed state vector. Residuals are defined in this vector as distances of data points 

from the mean curve. Because the matrix 𝐉𝐓𝐉 + λ𝐃𝟐 is always positive definite, Cholesky 

decomposition can be used to increase the efficiency of the LMA by breaking the matrix into a 

product of two matrices: a lower triangular matrix and its conjugate transpose. For a more in-depth 

examination of Cholesky decomposition, see literature by Higham [25]. 

In the LMA, when λ is very small compared to the norm of 𝑱𝑻𝑱, q tends towards the Gauss-Newton 

solution, whereas when λ becomes much larger in comparison to this norm, the steepest descents 

solution is calculated. Starting the iteration with λ = 0.1 is suggested by Marquardt. Throughout the 

iteration, λ should be decreased by a factor of 10 if the preceding solution q was found to be 

 

 
𝑆(𝒙̂ − 𝑡𝒗) < 𝑆(𝒙̂) (3.16) 

 

 

 

as was seen with the steepest descent method. Should 
 

 

 
 

𝑆(𝒙̂ + 𝒒) ≥ 𝑆(𝒙̂ ) (3.17) 
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λ should be increased by the same factor followed by repeating Eqn. (3.14). 

 

Marquardt’s modified LS algorithm was tested for its curve fitting capability. The decaying 

exponential function 

 

 
𝑦(𝑖, 𝒙̂) = 𝑐1 + 𝑐2 ∗ 𝑒𝑐3𝑥𝑖 (3.18) 

 

 

 

was used to test the algorithm, and the results of this test can be seen in Figure 3.1. 

 

The hitherto information in this paper form the basis for finding a solution to the Doppler shift 

problem. Using Marquardt’s method of damped least-squares curve-fitting, the sum-of-squares of 

the residuals caused by noise, which will be added as random noise in the simulation, will be 

reduced, with the hopes that they fall to zero. 

 

 

 

 

Figure 3.1 Solution of a decaying exponential function. Circles on the graph represent noisy data. 

The Solid red line is the LMA solution. 
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In the next chapter, the Levenberg-Marquardt algorithm, as it is applied to the present study, will be 

discussed in detail. The method used to provide simulated data will be established and the software 

used to fit an estimated orbit will be outlined. 
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4. MARQUARDT DAMPED LEAST SQUARES FILTER DESIGN 

 

The Levenberg-Marquardt Algorithm (LMA), also known as the Marquardt algorithm, is acclaimed 

for its proficiency in orbit estimation. The LMA is robust and allows for a higher degree of error in 

measured data if your initial estimate of the state vector is reasonable [26]. The Levenberg- 

Marquardt Filter (LMF) used in the present study borrows from the LMF outlined by Nash [24] 

with modifications presented by Transtrum and Sethna [27]. The algorithm provides a “best 

estimate” for state vector x when provided with noisy data and an initial “estimated” state vector. As 

it was applied to the present investigation, data was collected from a simulated orbit, then the orbit 

was perturbed to provide an initial estimate to the system. 

 
 

4.1 ACQUIRING DATA 

 

Using NORAD Two-Line Element (TLE) data retrieved from Celestrak, the radial and velocity 

components of a given satellite are calculated using the Simplified General Perturbations 4 (SGP4) 

propagator, which can be found online in many computing languages. The MatLab version of the 

SGP4 propagator used in the present paper, written by Mahooti [28], can be found on the 

MathWorks website. Initially, azimuth and elevation data taken from Gpredict satellite tracking 

software are used to generate the “truth” state vector. 

Gpredict (GP) is a free, downloadable satellite tracking application and was the original source of 

data needed to produce the state vector of a satellite in orbit at a given time. In this method, right 

ascension and declination angles were transferred from GP to MatLab for processing. Using Gauss’s 

method of preliminary orbit determination, a state vector can be produced using three sets of right 

ascension and declination angles along with their corresponding time. As the first orbit being tested 

for this experiment belonged to the ISS, GP data was enough to generate a state vector; however, 
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problems arose when examining satellites in a larger orbit. Curtis [14] explains the Gauss method in 

detail and mentions that the time between the measured angles should be small. While it is possible 

to manipulate the output from GP to an extent, the software did not provide data with short enough 

time intervals. This became apparent as state vectors generated for larger orbits (e.g., orbits of 

NAVSTAR and MOLNIYA satellites) were too flawed to provide adequate testbeds. Learning from 

this, it was determined that using TLE sets was the best alternative; however, because a user may 

want to produce an estimated orbit from observed angles, future work to the program used in this 

paper will provide the means to accomplish this goal. 

Once a state vector is produced form TLE data, it is propagated for several steps, allowing the 

collection of new state vector 𝒙̂𝑖 for i = 1,...,n, where n is the number of observational sets of data 

recorded. Depending on which data is chosen to be simulated, calculations of azimuth 𝐴𝑖, elevation 

𝑎𝑖, and/or range rate 𝜌̇𝑖  are stored in a matrix along with their corresponding time 𝑡𝑖. Azimuth is 

calculated as 

 

 

𝐴 = tan−1 (
𝜌̇𝑥 

) 
𝜌̇𝑦 

(4.1) 

 

 

 

where 𝜌̇𝑥 and 𝜌̇𝑦 are x and z components of the range vector. If A is negative, 3600 is added to its 

value. Elevation is calculated as 

 

 

𝑎 = tan−1 ( 
𝜌̇𝑧 

) 
√𝜌̇2  + 𝜌̇2 

𝑥 𝑦 

(4.2) 

 

 

 

Range rate is calculated using 
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𝝆 ∙  𝝆  

𝜌̇  = 
𝜌̇ 

(4.3) 

 

 

 

where 

 

 𝝆  is the range vector 𝝆 = 𝒓 − 𝑹 
 

 𝝆    is the ECI frame time derivative of 𝝆 𝝆  = 𝒗 − (𝝎𝐸 𝑥 𝑹) 
 

 𝜌̇ is the magnitude of 𝝆 𝝆  = √𝜌̇2 + 𝜌̇2 + 𝜌̇2 
𝑥 𝑦 𝑧 

 

𝑹 and r are the ground site and satellite positions with respect to the center of the earth and 𝝎𝐸 is 

the angular velocity of the earth about its 𝒆𝒄𝒛 axis. 

Process noise vector 𝒘𝑖 is then added to the data to resemble realistic measurements. While there 

are various options for state vector elements to fit using least-squares methods, two of these element 

sets are more commonly used [27]. 

Common element choices for state vector x, as it applies to orbit determination, are the cartesian and 

equinoctial sets of elements [29]. The cartesian state vector contains position and velocity 

components {𝑥, 𝑦, 𝑧,  𝑥 , 𝑦 , 𝑧 }, typically studied in the Earth-Centered, Inertial (ECI) frame or, as is 

the case in this study, the topocentric horizon frame, as shown in Figure 2.1. The equinoctial 

elements are calculated using the classical Keplerian elements. The equinoctial elements are not 

used in the present paper. There are many sources for information on the equinoctial elements, such 

as Battin [30]. 

 

 
4.2 LEVENBERG-MARQUARDT LEAST SQUARES FILTER 

 

In this section, the Levenberg-Marquardt Filter (LMF) as it applies to this study is detailed. First, a 
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brief discussion on the formation of the LMF is given, elaborating on the description given in 

Chapter Three. Then, modifications proposed by [27] are explained. 

In the study, “A Method for the Solution of Certain Non-Linear Problems in Least Squares,” 

Levenberg [32] proposed damping of parameter increments to improve first-order Taylor series 

approximations when a flaw was noticed “standard” methods. In past procedures [32] least squares 

algorithms using linear approximations found updated values for estimated parameters, but the 

algorithm would fail if the new values were not sufficiently close to the initial estimate. This is 

because the algorithm may neglect higher order term, which leads to a larger sum of squares of the 

residuals. Thus, Levenberg [32] determined that finding function residuals under damped conditions 

was a beneficial alternative. This was done by including a damping parameter 𝜆 to the least-squares 

system. The purpose of 𝜆 is to change the eigenvalues of the matrix 𝑱𝑇𝑱 + 𝜆 𝑫𝑇𝑫, where 𝑫𝑇𝑫 is a 

scaling matrix, to be equal to 𝜆 or greater [27]. After Levenberg’s [32] development of this novel 

approach to least-squares methods, Marquardt [33] added modifications. 

Marquardt [33] produced additions to Levenberg’s [32] method for least-squares in his paper, “An 

Algorithm for Least-Squares Estimation of Nonlinear Parameters.” Noting that the two methods 

used most often for non-linear least-squares estimation, that is, iteratively correcting parameters of 

the Gauss-Newton Method (GNM) and various methods of using the Steepest-Descent Method 

(SDM), often fail. The Taylor series method fails due to divergence of successive iterations. SDM 

failures are caused by slow convergence just a few iterations in [33]. Thus, Marquardt [33] proposed 

a “maximum neighborhood” method. This method switches between the GNM and SDM based on 

the maximum neighborhood where sufficient representations of the non-linear model can be found 

from the truncated Taylor series. As was discussed in Chapter 3, the Marquardt method switches 

between the GNM and SDM by comparing values of the sum of squares of residuals of successive 
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steps to those of previous steps. Should the sum of squares resulting from the corrected set of 

parameters be greater than the previous sum of squares, the algorithm favors the SDM. Conversely, 

if the new sum of squares is less than the previous iteration, the method proceeds with the GNM. 

The algorithm, once supplied with a vector of initial estimates p and recorded data, iteratively 

repeats the following steps [27]: 

1. Calculate new data and Jacobian values based on the updated parameters. 

 

2. Calculate new Marquardt parameter (damping term) 𝜆 and scaling matrix 𝑱𝑇𝑱. 
 

3. Calculate parameter step 𝛿𝒑 using Eqn. (3.14). 

 

4. Test the updated parameter set (𝒑 + 𝛿𝒑) by calculating the residuals of new data to the 

previous sum of squares. 

5. If the new sum of squares of residuals is less than the previous sum of squares, 𝛿𝒑 is 

accepted. 

6. Cease iterations if convergence criteria are met or a predetermined maximum iteration count 

has been reached. 

There are various methods used to determine the damping parameter and scaling matrix. 

 

 

4.2.1 Damping Parameter and Scaling Matrix 

There are two classes of methods used to determine the damping parameter 𝜆: direct and indirect. 

Direct methods imply that if 𝜹𝒑 results in a smaller sum of squares of residuals, 𝜆 is decreased by 

some factor. Conversely, if 𝛿𝒑 is rejected, 𝜆 is increased by some factor. The factor to increase or 

decrease 𝜆 in this method are decided by the user. It is determined that choosing a 𝜆 decreasing 

factor lower than the 𝜆 increasing factor leads to better results [27]. Transtrum and Sethna [27] 

suggest using a factor of 5 when decreasing 𝜆 and a factor of 1.5 to raise 𝜆 for larger problems. For 
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smaller problems, decreasing and increasing factors of 3 and 2, respectively, work best [27]. Nash 

 

[24] suggests making decreasing and increasing factors 0.4 and 10, respectively. 

 

To use the indirect method for determining 𝜆, a step size Δ is first determined. The damping 

parameter that ensures |𝛿𝒑| ≤ Δ is then found. As this method for determining 𝜆 will not be used in 

this study, greater detail on the matter will not be provided in the present paper. For further 

information on this indirect method for finding 𝜆, see literature such as Mor𝑒  [34]. Transtrum and 

Sethna [27] determined that some problems perform better using the direct method for determining 

𝜆, while others favor the indirect method. 

 

There are several options when choosing the scaling matrix 𝑫𝑇𝑫. While Levenberg first determined 

the scaling matrix be the identity matrix I [27], both Levenberg [32] and Marquardt [33] settled on 

using the diagonal entries of 𝑱𝑇𝑱 [24]. More  [34] determined that the optimal scaling matrix would 

be a diagonal matrix which updates its entries with the largest diagonal entries of 𝑱𝑇𝑱 encountered 

through the duration of the run. 

 
 

4.2.2 Gain Factor 

To ensure a faster convergence using the LMF a gain factor β is used to control which corrections 

are accepted. This gain factor is formulated as follows (adapted from [35]): 

 

 
𝐹(𝒙̂) − 𝐹(𝒙̂ + 𝒒) 

𝛽 = 
𝐿(𝟎) − 𝐿(𝒒) 

(4.1) 

 

 

 

where F(x) is the data function evaluated with parameter vector x and F(x + q) is the data function 

evaluated with parameter correction vector q. The denominator is evaluated as 
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𝐿(𝟎) − 𝐿(𝒒) = −𝒒𝑱𝑻𝒇 − 
1 
𝒒𝑻𝑱𝑻𝑱 𝒒 

2 

(4.2) 

 

 

 

= − 
1 
𝒒𝑻[2𝑭′ + 𝑱𝑻𝑱 + 𝜆𝑰 − 𝜆𝑰)𝒒] 

2 

(4.3) 

 

 

 
1 

=  𝒒𝑻(𝜆𝒒 − 𝑭′) 
2 

(4.4) 

 

 

 

where 
 

 

 
 

𝑭′ = 𝐉T𝒇 (4.5) 
 

 

 

When 𝛽 falls below a predetermined value 𝜖4 the parameter correction is rejected and 𝜆 in 

increased. Otherwise, the parameter correction is accepted and 𝜆 is decreased. 

 
 

4.2.3 Broyden Rank-1 Jacobian 

 

Each time a correction is accepted to the parameter vector, the Jacobian matrix is updated so new 

corrections can be determined. This Jacobian matrix is typically evaluated as 

 

 

Jij = δfi⁄δy 
j 

(4.6) 

 

 

 

or 
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𝑭(𝒙̂ + 𝛿𝒙̂) − 𝑭(𝒙̂) 
𝑱 = 

𝛿𝒙̂ 

(4.7) 

 

 

 

As calculating J each time can become computationally expensive, Transtrum and Sethna [27] 

suggest using an alternative update method set forth by Broyden [36]. Broyden [36] determined that 

a quasi-Newton root finding method that updates J with first derivatives on the first iteration, then 

alternates between reevaluating J with a rank-1 update. This Broyden rank-1 update is written as 

(adapted from [36]) 

 

 
(𝐹(𝒙̂𝑘) − 𝐹(𝒙̂𝑘−1) − 𝑱𝒒)𝒒𝑇 

𝑱𝑘  = 𝑱𝑘−1  + 
𝒒𝑇𝒒

 
(4.8) 

 

 

 

where subscript k indicates the current step and k-1 represents the previous step. 

 

 

4.2.4 Convergence and Stopping Criterion 

If the software running the least-squares estimator is not told when it is a good place to stop, it may 

continue iterating indefinitely. This implies that either the parameters have converged to a solution 

and further iterations cease to produce worthwhile results, or the function is not solvable under the 

given conditions and further iterations produce worthless results. Convergence and stopping criteria 

are added to the least-squares program to ensure further calculations are not carried out once the 

criteria are met. It is suggested to use the following convergence criteria (adapted from [35]): 

1. ||𝑭′(𝒙̂)|| ≤ 𝜖1 
 

||𝒒|| 
2. 

||𝒙̂+𝜶|| 
≤ 𝜖2, where 𝛼 is greater than zero 

 

3. 𝑘 ≥ 𝑘𝑚𝑎𝑥 



44  

The first criterion stops the program should the highest absolute value in the gradient vector be less 

than a user specified value 𝜖1. This will be called the gradient convergence criterion. The second 

criterion stops the program if the highest absolute value of the correction vector divided by its 

counterpart in the absolute value of the parameter vector plus 𝛼, a small number greater than zero, is 

less than the user specified 𝜖2. The third criterion stops the program should the iteration count meet 

or exceed some predetermined value. 

 

 
4.3 BUILDING THE SOFTWARE 

 

For this study, MatLab was used to write the orbit determination software. To use the LMF, a 

program was first designed to calculate the “truth” state vector from the TLE set of a given satellite. 

Next, a program to propagate the state vector for the pass duration of the satellite is used, and 

simulated data is collected. Then, a vector of perturbing elements is added to the “truth” orbit to 

simulate an initial estimate of the state vector. Finally, the “estimated” state vector and simulated 

data are passed to the LMF to find the “best estimate” of the orbit fitting the supplied data. The 

setup of the LMF and subroutines are set up similarly to many other programs using least squares 

algorithms. 

Three main routines are required when testing a least-squares filter: the least-squares filter, a data 

acquisition function, and a testing program. The least-squares filter, in this case, the LMF, is built to 

handle a variety of data fitting applications. Next, a test program is created to declare a vector of 

initial estimated parameters, system constants, and filter options. Additionally, the test program 

reads a file consisting of data and times the data was taken. Finally, the data acquisition function 

uses the vector of parameters and the vector of times corresponding to the times of real data 

measurement to simulate data. 
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4.3.1 Test Program 

In the algorithm test program, “Orbit100.m”, users can alter testing options before state vectors are 

produced. Satellites that are currently available for testing are NAVSTAR-77, MOLNIYA 3-50, and 

the ISS. The test program is broken up into seven sections. 

Satellite selection and orbit propagator options can be set in the first section of this program. The 

TLE set for the selected satellite downloads automatically when the program is started. While only 

the mentioned satellites are available for the user’s convenience, additional satellites can be tested 

with a text file containing the TLE of the desired satellite. Also, in the first section, the choice of 

which observation set to use can be made. 

For case one, only range rate observations are calculated. The focus of this paper is to study the 

ability of the LMF to estimate an orbit purely from the Doppler data received from the downlink 

signal of a satellite. Thus, the range rate “observations” used in this study are meant to simulate data 

derived from Doppler data by solving Eqn. (1.23) for 𝜌̇ : 

 

 
𝑐 

𝜌̇𝑖  = 𝛥𝑓𝑖 ∙ (− 
𝑓 

) 
𝑡 

(4.9) 

 

 

 

where 𝛥𝑓𝑖 = 𝑓𝑟,𝑖 − 𝑓𝑡 (frequency received at the ground site at time 𝑡𝑖 minus signal frequency 

transmitted by the satellite) is the Doppler shift at time 𝑡𝑖 and c is the speed of light. As the 

observations of Doppler shift are simulated in this paper, another method of calculating range rate is 

desired. This method was discussed in Section 4.1. 

 

For case two, azimuth and elevation calculations can be taken along with the range rate. 

Alternatively, testing can be done using only azimuth and elevation in case three. While the focus of 



46  

this paper is on using Doppler data (range rate) for orbit estimation, these additional cases will serve 

well for comparison. Methods used to calculate azimuth and elevation were covered in Section 4.1. 

Section two of the main program allows changing of options used in the LMF. The options 

included are: 

 bdx - Small perturbation value used for Jacobian calculation (𝛿x in Eqn. 4.7) 

 

 lambda - The Marquardt scaling parameter 𝜆 
 

 incr - A value to increase lambda 

 

 decr - A value to decrease lambda 

 

 maxIter - Determines maximum iteration count 

 

 eps1 - Gradient convergence criteria 𝜖1 

 eps2 - Parameter convergence criteria 𝜖2 

 eps3 - Root mean square convergence criteria 𝜖3 

 eps4 - state correction acceptance criteria 𝜖4 

 
In section three of “Orbit100.m”, the start time for the satellite pass is entered. Satellite tracking 

software, such as GP, or internet databases can be used to find satellite flyby times. Time is entered 

in Universal Time (UT). In section four of “Orbit100.m”, the user can change the position of the 

ground site. Currently, the simulated ground site shares the location of San Jose State University. 

Constants and coefficients are read into the program from exterior files in sections 5 and 6 of 

“Orbit100.m.” 

In sections 5 and 6 of “Orbit100.m,” files containing constants and coefficients used in the orbit 

generator are loaded. These files contain Earth Orientation Parameters (EOP), the GRACE gravity 

model (GGM03S), and NASA JPL Development Ephemerides (DE430). Finally, in section 7 of 

Orbit100.m, data is generated, and the “estimated” orbit is produced. 
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4.3.2 Orbit and Data Generator 

The orbit propagator used in this study was part of a package put together by Meysam Mahooti. The 

unaltered version of “High Precision Orbit Propagator” (HPOP) can be found on the MathWorks 

File Exchange. Mahooti’s HPOP was chosen for its ability to model the variety of forces that act on 

Earth-orbiting satellites. These forces are: 

 Gravity field of the earth 

 

 Gravity of the solar system planets 

 

 Drag effect 

 

 Solar radiation pressure 

 

 Solid Earth tides 

 

 Ocean tides 

 
The ordinary differential equation solver used in HPOP is the Radau IIa, which is derived by Hairer 

and Wanner [31]. Radau IIa is derived from implicit Runge-Kutta methods that offer step size 

control and continuous output. 

The programs “get_obs.m” and “get_data.m” are called to propagate the state vector x to times 

determined by step size and the number of observation sets. The “truth” state vector is propagated in 

“get_obs.m”, where azimuth, right ascension, and/or range rate data are calculated. White noise is 

added to this data to simulate data that may be picked up by ground site hardware. Similarly, 

“get_data.m”, used throughout the LMF, propagates the “estimated” orbit and records data at the 

times used for observations. As the LMF searches for state vectors with a better fit, “get_data.m” is 

used to calculate data in the generated orbits. 
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4.3.3 Least-Squares Filter 

The following algorithm borrows from algorithms found in [24, 26, 27, 33, 35]. 

 

Step 1) Enter parameters, observations, options, and constants 

Enter 𝑌0, vector of initial parameter estimates 

Enter nxm matrix of observations Obs where column 1 is time 

Enter options, discussed in Section 4.3.1 

Let 𝛿𝑥 = 25 ∗ 10−7, perturbation value for the Jacobian 

Let 𝜆0 = 1 ∗ 10−4, starting value of the Marquardt parameter 

Let incr = 10, factor to increase 𝜆 
Let decr = 0.4, factor to increase 𝜆 
Let maxIter = 30, maximum iteration value 

Let 𝜖1 = 1 ∗ 10−4, gradient convergence criteria 

Let 𝜖2 = 1 ∗ 10−10, parameter convergence criteria 

Let 𝜖3 = 1 ∗ 10−6, root mean square convergence criteria 

Let 𝜖1 = 1 ∗ 10−12, parameter correction acceptance criteria 

Let iterat = 1, to count iterations 

Let n = length(Obs) 

Let lx = length(𝒀0) 

Let 𝑶𝒃𝒔𝒗𝒆𝒄 be a vector of the data found in matrix Obs 

Let 𝒅𝒂𝒕𝒂𝑣𝑒𝑐  be a vector of data calculated from initial parameter estimates 

Step 2) Calculate SSx = 𝑆(𝒀0) = 𝒇𝑇(𝒀0)𝒇(𝒀0), sum of squares of from initial estimate 
If SSx cannot compute, stop. 

Calculate g and test for gradient convergence 

Let SSx[k] = SSx [k+1] 

Step 3) Calculate 𝑱𝑇𝑱 and 𝑱𝑇𝒇 
Let iterat = iterat + 1 

For i = 1 to l 

For k = 1 to lx 

Let dx = bdx 

Let xd = 𝒀0 
Let xd[k] = xd[k] +dx 

Calculate 𝑱𝑑𝑎𝑡, data from perturbed parameters 

Let Jj[1:w-1,k] = (𝑱𝑑𝑎𝑡 − 𝒅𝒂𝒕𝒂𝑣𝑒𝑐)/𝑑𝑥 
End loop on k 

Collect Jj calculations into matrix J 

End loop on i 

Calculate A = 𝑱𝑇𝑱 
Calculate 𝒈 = 𝑱𝑇𝒇 , gradient 

Let 𝑫 = 𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝑨)) 

Step 4) Solution of Eqn. (3.14) 

Calculate 𝒒 = (𝑨 + 𝝀 ∗ 𝑫)−𝟏 𝒈 
Step 5) Test parameter correction 

Let 𝒀𝑡𝑟𝑦 = 𝒀0 + 𝒒 

Calculate data 𝒚𝑡𝑟𝑦 using 𝒀𝑡𝑟𝑦 
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Let f = 𝑶𝒃𝒔𝒗𝒆𝒄 − 𝒚𝑡𝑟𝑦 

Calculate 𝑆𝑆𝑥𝑡𝑟𝑦 = 𝒇′𝒇 

Calculate 𝛽 = (𝑆𝑆𝑥 − 𝑆𝑆𝑥𝑡𝑟𝑦)/(𝒒𝑇(𝜆𝒒 + 𝒈), acceptance criteria 

If 𝛽 > 𝜖4 
Let dSSx = 𝑆𝑆𝑥 − 𝑆𝑆𝑥𝑡𝑟𝑦 
Let SSx[k] = SSx[k+1] 

Let 𝒀0[𝑘] = 𝒀0[𝑘 + 1] 
Let 𝒅𝒂𝒕𝒂𝑣𝑒𝑐[𝑘] = 𝒅𝒂𝒕𝒂𝑣𝑒𝑐[𝑘 + 1] 
Let 𝒀0 = 𝒀𝑡𝑟𝑦 

Let 𝜆 = 𝜆 ∗ 𝑑𝑒𝑐𝑟 
Else  

SSx[k+1] = SSx[k] 

𝜆 = 𝜆 ∗ 𝑖𝑛𝑐𝑟 
Step 6) Test for convergence 

If max |𝒈|| ≤ 𝜖1 & iterat > 2 

Stop 

If max||𝒈|| / (||𝒀𝟎|| + 𝟏 ∗ 𝟏𝟎−𝟔) & iterat > 2 

Stop 

If iterat = maxIter 
Stop 

Step 7) Return to step 3, and try again to reduce the sum of squares 

 

 
4.4 REMARKS 

 

The LMF is said to be one of the best methods for fitting a state vector to noisy data. In this chapter, 

the LMF used in the present study is explained to give the reader an understanding of the necessary 

steps for using this algorithm. Methods used to simulate data are discussed and a detailed 

explanation of the software used is given. In the next chapter, the LMF will be tested using the 

satellites discussed in Section 4.3.1. By simulating the Doppler shift using a calculated range rate 

(with added noise), it is determined that if the LMF can converge to a solution for each of these 

satellites, the Marquardt algorithm for least-squares is a premier choice for fitting using Doppler 

data. 
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5. RESULTS AND ANALYSIS 

 

In this chapter, the Levenberg-Marquardt Damped Least-Squares algorithm, outlined in previous 

chapters, is tested for its ability to provide the “best estimate” for the state vector of an orbit at a 

given epoch. To generate the “truth” orbit of a satellite, the Two-Line Element set of the desired 

satellite is downloaded into a text file, then it is processed using an SGP4 propagator and the 

cartesian “truth” state vector is produced. With the state vector acquired, an ephemeris is generated, 

and simulated observations of range-rate, azimuth, and elevation can be calculated. In the various 

cases run in this chapter, different combinations of these data are studied. In testing of real data, 

range-rate would be calculated using the Doppler shift of the carrier signal from the satellite. For the 

simulated case, it is assumed that the Doppler data has already been processed, giving range rate at 

each respective point in the orbit. A simulated ground site is used as an observation point. The 

simulated ground site shares the latitude and longitude of San Jose State University: 

37.3352𝑜 𝑁, 121.8811𝑜 𝑊. Next, the state vector of the “estimated” orbit is generated. 

 

To generate simulated observations, an initial “estimated” state vector is created by perturbing the 

initial “truth” state vector. This “estimated” state vector is propagated, and the desired parameters 

are calculated using methods described in the previous chapter. To this data, white, zero-mean, 

Gaussian noise is added. The standard deviation for the noise added to each parameter can be seen 

in Table 4.1. The standard deviation for azimuth and elevation are “realistic” for satellite tracking 

radar sensors [29]. By both perturbing the predicted orbit and adding noise to the simulated data the 

response of the filter to an erroneous initial state vector can be evaluated. 
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Table 5.1 Gaussian Measurement Noise Standard Deviation 

Parameter Type Standard Deviation 

Azimuth, Elevation 18 arc-seconds 

Range-Rate 5 meters per second 

 
 

The following outputs are collected from the filter upon execution: 

 

 Summary table 

 

o Predicted state vector 
 

o A priori (estimated) state vector 
 

o Correction vector (quantifies correction made by filter to each state) 
 

o Best estimate for state vector at epoch 

 
To determine the accuracy of the filter for each case, the correction vector is the most vital piece of 

information. To quantify the precision of the filter one needs only compare this Correction Vector 

(CV), to the Perturbing Vector (PV) that was added to the “truth” initial state vector. For example, 

should the filter produce a perfect fit of the data, the CV would be equal to the negative of the PV, 

or 

 

 
𝑪𝑽 = −𝑷𝑽. (5.1) 

 

 

 

Realistically, there will still be error in the “estimated” orbit. 

 

The satellites tested in this study are the ISS, NAVSTAR-77, and MOLNIYA 3-50. These satellites 

were chosen for the variety seen between their respective orbits. For the ISS, a low altitude (about 

416 km), circular orbit with small eccentricity is observed. Due the smaller size of the ISS orbit, the 

space station has an orbital period of about 1.5 hours. The NAVSTAR orbit is similar to that of the 

ISS, in that it is circular with small eccentricity; however, this orbit is much larger at around 20,189 
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km. The larger orbit gives the NAVSTAR satellite an orbital period of about 12 hours. The largest 

variation is introduced in the Molinaya orbit. The MOLNIYA 3-50 boasts a very high eccentricity of 

0.72129. Like the NAVSTAR orbit, the MOLNIYA has an orbital period of about 12 hours. Tables 

5.1 and 5.2 show the orbital elements of the three satellites used in this study. These state vectors are 

presented in both Cartesian and Keplerian elements. The Cartesian elements are meant to give the 

reader an idea of what the “truth” vector should look like, and the Keplerian elements are shown to 

give an idea of the size and shape of the respective orbits. 

For the LMF, each orbit is propagated from the cartesian state vector at an epoch corresponding to 

the time of an overhead pass of the satellite. The epoch of the ISS was May 2, 2019 at 12:08:04 

UTC. The initial state vector used for the NAVSTAR-77 had the epoch May 5, 2019 at 11:55:32 

UTC. The epoch of the Molinaya orbit was May 2, 2019 at 12:08:04 UTC. Although it was 

attempted to get these passes close to each other, the significance of the ISS and MOLNIYA epochs 

are purely coincidence. 

 

 

 

Table 5.1 Cartesian state vectors of test case satellites. 

 
 ISS NAVSTAR-77 MOLNIYA 3-50 

x (km) 5700.1 -24840.6 10138.65 

y (km) 2899.8 -8865.8 -19796.5 

z (km) 2269.0 3155.2 24154.7 

𝑥  (km/s) -0.5624 1.1046 1.202 

𝑦  (km/s) 5.3769 -1.9818 0.9401 

𝑧  (km/s) -5.4370 3.1397 -2.634 
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Table 5.2 Keplerian state vectors of test case satellites. 

 
 ISS NAVSTAR-77 MOLNIYA 3-50 

2 

h 
𝑘𝑚 

( ) 
𝑠 

52029.77 102898.1 71305.23 

e 0.001259 .000378 0.7208 

Ω (deg) 223.3 194.8 152.2 

i (deg) 51.65 55.0 62.1 

𝜔 (deg) 106.0 276.2 271.7 

𝜃 (deg) 48.72 92.17 212.0 

a (km) 6791.5 26563.0 26549.2 

 

 

 
 

5.1 TEST CASE RESULTS 
 

For this investigation, various test cases were included. First, it was desired to test how accurately 

the LMF corrected satellite orbits of varying sizes and shapes. Many sources focus on testing filters 

on satellites following a circular orbit, so a highly elliptic orbit will be included in testing to 

discover if this factor changes the accuracy of the filter. Second, while the goal of this experiment is 

to test the ability of the filter to fit corrupted data from the downlink frequency shift (which is used 

to derive range-rate), test cases involving additional parameters are included for comparison. 

The satellites tested in this paper were chosen for the size and shape of their respective orbits. 

Starting with the orbit with the lowest altitude in this experiment, the International Space Station 

(ISS) is tested. Next, increasing the altitude to MEO, the orbit of NAVSTAR-77, part of the Global 

Positioning System (GPS) family of satellites, is examined. 

Finally, to test the filter on a highly eccentric orbit, the MOLNIYA 3-50 is included. As the focus of 

this paper is orbit estimation using the Doppler shift from the downlink of a satellite, satellites 

located in GEO were not considered for this experiment as there would be no apparent change in the 

downlink frequency of the respective satellite. 
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The “observation” parameters were chosen due to their observability. According to Folcik [29], 

typical observations used for satellite orbit estimation are made up of angular optical observations 

and radar observations. The angular optical observations consist of right ascension and declination 

measurements made against the background of stars. While radar observations also include two 

angle measurements, azimuth and elevation, they also include range and range-rate measurements. 

The present analysis assumes that for each case, direct determination of range-rate is not feasible. 

The number of observations used for each satellite varies based on the size of the orbit. 

While the smaller orbit of the ISS requires fewer data points (25 were used in the present analysis) 

to allow the LMF to converge, Hunter [17] advises using an increased number of observations for 

the larger orbits of NAVSTAR-77 and MOLNIYA 3-50 to better capture their curvature. An 

increased step size allows the full pass of the satellite to be captured without creating abundant data 

points to calculate. For the both the NAVASTAR and MOLNIYA satellites, 100 observations were 

simulated. The output from the LMF is indicative of how well the filter performed. While 

optimizing a program could entail limiting the amount of function calls, it is expected that running 

the LMF with increased step size and observation counts will take longer to converge than the more 

circular ISS case. For the ISS, a step size of 25 seconds was chosen. With the 25 sets of 

observations, this step size allowed the filter access to the full pass duration of 10.5 minutes. To 

cover the full pass durations, the NAVSTAR and MOLNIYA orbits were given step sizes of 252 

seconds and 360 seconds, respectively. 

The output of the LMF is a set of four vectors. These vectors are 

 

 Truth - the initial “truth” state vector retrieved from TLE of the satellite 

 

 Estimated - “estimated” initial state vector. In the case of this paper, this state vector was 

“estimated” by perturbing the “truth” vector. Each satellite initial state vector is perturbed by 
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a unique value vector. For smaller orbits, i.e., the orbit of the ISS, a closer estimate is 

assumed. Conversely, the orbits of the NAVSTAR and MOLNIYA satellites will have a 

higher assumed error in the initial state estimate. 

 Correction - a vector of overall corrections made by the LMF to the “estimated” state 

vector. 

 Final - a vector showing the corrected “estimated” state vector. 

 
Table 5.3 shows the vectors used to perturb each of the satellites under investigation. 

 

It is worth noting that when using the SGP4 propagator on the TLE for the ISS, the resultant state 

vector is the negative of the true state vector. To remedy this, signs of the state vector were changed 

each time the ISS was tested. To understand how well the LMF performs, the run time of each case 

will also be recorded. 

 
 

Table 5.3 State Vector Perturbation Vectors. 

 
 ISS NAVSTAR MOLNIYA 

x (km) 0.5 -5.0 6.0 

y (km) -2.0 -3.0 -2.0 

z (km) 1.0 4.0 5.0 

𝑥  (km/s) -1.3∗ 10−3 -1.6∗ 10−3 3.0∗ 10−3 
𝑦  (km/s) 1.0∗ 10−3 1.0∗ 10−3 1.0∗ 10−3 
𝑧  (km/s) -0.5∗ 10−3 -2.5∗ 10−3 -2.5∗ 10−3 

 

 

 

5.1.1 Range rate, Azimuth, and Elevation Cases 

 

While the focus of the present paper is to determine the adequacy of the LMF to fit noisy 𝜌̇  data, it 

is important to have cases with various parameters to compare results. In this subsection, the results 

from using the most data types – namely, range rate, azimuth, and elevation – are displayed. In all 
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cases, range rate data represents transformed Doppler data. If real data were present, 𝜌̇  would be 

calculated from the Doppler shift in the downlink signal of the satellite using Eqn. (1.23). Tables 

(5.4-5.6) show the results of using range rate, azimuth, and elevation. The final row of each table 

gives the time t for the LMF to converge for the respective case. 

 
 

Table 5.4 ISS Results from 𝜌̇ , Azimuth, Elevation. 

 
 Truth Predicted Correction Final 

x (km) -6197.6 -6197.1 -0.5 -6197.6 

y (km) -1366.2 -1368.2 2.0 -1366.2 

z (km) 2416.3 2417.3 -1.0 2416.3 

𝑥  (km/s) 3.0828 3 .0815 1.33∗ 10−3 3.0828 

𝑦  (km/s) -4.5287 -4.5277 -1.0∗ 10−3 -4.5287 

𝑧  (km/s) 5.3561 5.3556 0.5∗ 10−3 5.361 

t = 446.626 s 

 
 

Table 5.5 NAVSTAR-77 Results from 𝜌̇ , Azimuth, Elevation. 

 
 Truth Predicted Correction Final 

x (km) -14280.1 -14285.0 5.0 -14280.1 

y (km) -15437.3 -15440.3 3.0 -14537.3 

z (km) 16212.8 16216.8 -4.0 16212.8 

𝑥  (km/s) 3.1686 3.167 1.6∗ 10−3 3.1687 

𝑦  (km/s) -0.7177 -0.7067 -1.0∗ 10−3 -0.7077 

𝑧  (km/s) 2.1153 2.1128 2.5∗ 10−3 2.1153 

t = 2639.753 s 

 
 

Table 5.6 MOLNIYA 3-50 Results from 𝜌̇ , Azimuth, Elevation. 

 
 Truth Predicted Correction Final 

x (km) -14280.1 -14274.1 -6.0 -6197.6 

y (km) -15437.3 -15439.3 2.0 -15439.4 

z (km) 16212.8 16217.8 -5.0 16212.8 

𝑥  (km/s) 3.1686 3.1716 -3.01∗ 10−3 3.1686 

𝑦  (km/s) -0.7077 -0.7067 -1.01∗ 10−3 -0.7078 

𝑧  (km/s) 2.1153 2.1128 2.49∗ 10−3 2.1153 

t = 3539.89 s 
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As seen in Tables (5.4-5.6), the LMF performed remarkably well. Each of the estimated state 

vectors were correctly fitted to the noisy data. The data collected from the orbit of the propagated 

“estimated” state vector, as well as noisy data collected from the “truth” orbit can be found in 

Appendix A. 

 

5.1.2 Angles Only Case 

 

For the second set of cases, angles of azimuth and elevation (with added noise) will serve as the 

“observed” data. This case is included in the present analysis to determine if including range rate 

information has a significant impact on the performance of the LMF. Tables (5.7-5.9) show the 

results of using angles only with the LMF. 

 
 

Table 5.7 ISS Results from Azimuth & Elevation. 

 
 Truth Predicted Correction Final 

x (km) -6197.3 -6197.8 -0.5 -6197.3 

y (km) -1366.8 -1368.8 2.0 -1366.8 

z (km) 2416.8 2417.8 -1.0 2416.8 

𝑥  (km/s) 3.0836 3 .0823 1.29∗ 10−3 3.0836 

𝑦  (km/s) -4.5285 -4.5275 -0.99∗ 10−3 -4.5285 

𝑧  (km/s) 5.3558 5.3553 0.49∗ 10−3 5.3557 

t  = 90.013 

 
 

Table 5.8 NAVSTAR-77 Results from Azimuth & Elevation. 

 
 Truth Predicted Correction Final 

x (km) 14277.2 -14272.2 5.0 14277.2 

y (km) 15437.6 15440.6 3.0 15437.6 

z (km) -16214.8 -16210.8 -4.0 -16214.8 

𝑥  (km/s) -3.1690 -3.706 1.59∗ 10−3 -3.1690 

𝑦  (km/s) 0.7175 0.7085 -0.9901∗ 10−3 0.7075 

𝑧  (km/s) -2.1149 -2.1174 2.49∗ 10−3 -2.1149 

t = 5835.172 s 
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Table 5.9 MOLNIYA 3-50 Results from Azimuth & Elevation. 

 
 Truth Predicted Correction Final 

x (km) -19347.0 -19341.0 -6.0 -19347.0 

y (km) 1824.3 1822.3 2.0 1824.3 

z (km) 14893.2 14898.2 -5.0 14893.2 

𝑥  (km/s) -1.1151 -1.1121 -2.99∗ 10−3 -1.1150 

𝑦  (km/s) -1.6175 -1.6165 -0.99∗ 10−3 -1.6175 

𝑧  (km/s) 3.6997 3.6972 2.49∗ 10−3 3.6997 

t = 2805.202 s 

 

 

 

 

5.1.1 Range Rate Only Case 

 

For the final set of cases, range rate 𝜌̇  data will be the only observations used for the LMF. The 

results of this case are seen in Tables (5.10-5.12). 

 

 

Table 5.4 ISS Results from 𝜌̇  only. 

 
 Truth Predicted Correction Final 

x (km) -6197.3 -6196.8 -0.5 -6197.3 

y (km) -1366.8 -1368.8 2.0 -1366.8 

z (km) 2416.3 2417.3 -1.0 2416.8 

𝑥  (km/s) 3.0836 3 .0815 1.29∗ 10−3 3.0828 

𝑦  (km/s) -4.5285 -4.5277 -1.01∗ 10−3 -4.5287 

𝑧  (km/s) 5.3558 5.3553 0.49∗ 10−3 5.3557 

t = 365.792 s 

 

 

 

For the NAVSTAR-77, using the original perturbation mentioned Table 5.3 consistently caused the 

orbit LMF to diverge. When the perturbation vector was decreased to 
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PV = [-4  -2.5 3  -1.6∗ 10−3 1∗ 10−3 -2∗ 10−3], 

 

 

the LMF was able to converge. 

 

 

Table 5.5 NAVSTAR-77 Results from 𝜌̇  only (using updated PV). 

 
 Truth Predicted Correction Final 

x (km) 14277.2 -14273.2 4.0 -14277.2 

y (km) 15437.6 -154351 2.5 -14437.3 

z (km) -16214.8 16216.8 -3.0 16214.8 

𝑥  (km/s) -3.1686 3.167 1.61∗ 10−3 3.1690 

𝑦  (km/s) 0.7177 -0.7067 -0.99∗ 10−3 -0.7075 

𝑧  (km/s) -2.1153 2.1128 2.01∗ 10−3 2.1149 

t = 4416.133 s 

 

 

 

Table 5.9 MOLNIYA 3-50 results from 𝜌̇  only. 

 
 Truth Predicted Correction Final 

x (km) -19341.5 -19341.5 -6.0 -19341.5 

y (km) 1826.6 -15439.3 2.0 -1826.6 

z (km) 14880.8 16217.8 -5.0 14880.8 

𝑥  (km/s) -1.1162 3.1716 -2.99∗ 10−3 -1.1162 

𝑦  (km/s) -1.6178 -0.7067 -0.99∗ 10−3 -1.6178 

𝑧  (km/s) 3.7013 2.1128 2.51∗ 10−3 3.7013 

t = 2514.526 s 

 

 

 
 

5.2 ANALYSIS 
 

The results have shown that the LMF is remarkable at fitting an orbit to noisy data, including cases 

where the only observation is range rate. Most test cases converged using the perturbing vectors 

outlined in Table 5.3 with the outlier being angles only case for the NAVSTAR satellite. 

Using the original PV caused the LMF to apply zero corrections to the estimated orbit for 
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NAVSTAR-77. Through the iterations, it was observed that each new change was rejected, and 𝜆 

continued to grow until it hit a max at 10−7. Potential changes were repeatedly rejected even as the 

potential corrections dwindled down to zero. It was believed that the initial guess may have been too 

far off for this case (as the literature suggests the filter relies on an estimate close to the solution), so 

the PV was decreased in an attempt to remedy the failure. Indeed, the decrease in PV allowed the 

filter to find the solution. Previous builds of the LMF ran into problems as well. 

The results found in this section are the outcome of a fourth generation build of the LMF. Previous 

iterations proved successful (see Appendix C for results) for the ISS, which converged, and 

NAVSTAR, which gained successful, albeit lacking, corrections, but it failed to properly correct the 

MOLNIYA cases. Additionally, even though the ISS and NAVSTAR cases were able to be 

corrected, there was still room for improvement to the solution, but additional observations only 

served to exacerbate the error in the final estimate. This failure was prominent in the MOLNIYA 

case as it was believed that adding data from an additional pass would fix the problem, but the 

added pass only increased computational cost with zero benefit to the solution. The latest build 

(used for the results in this chapter) allowed convergence of each of the satellite cases by making 

several modifications to the program structure. 

In previous LMF software designs created in this study, the least-squares algorithm and orbit 

generator were grouped into one program. While this design can work, as it did for the ISS and 

NAVSTAR cases, it became difficult to track variable usage. For example, one section of the 

program split a time of the format HH:MM:SS, where HH, MM, and SS are hours, minutes, and 

seconds, respectively. The hours, minutes, and seconds were saved to a time vector with variables 

{hr min sec}. When the output from the program was far from what was expected, it took many 

hours before the mistake was found. In this case, saving a number under the variable “min” caused 
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equations that were meant to find the minimum (using the min.m function) to output erroneous 

solutions. The use of “sec” as a variable also caused errors when calling external functions as 

MatLab uses “sec” to find the secant of an angle. Though MatLab typically spots these types of 

errors and notifies the user, in this case the only hint of the error was in the output of the program. 

This was one of many instances that urged the reformatting of the software. Thus, the LMF and 

orbit/data generator were built into separate functions, leaving the original file to serve as a testing 

function. Once this procedure was complete, each case was able to converge. 

As was expected, the ISS was able to converge much faster than the other two cases. This relatively 

quick convergence is the product of fewer necessary observations and smaller step sizes. Using this 

ideology, it was surprising to find the MOLNIYA cases converging about forty minutes faster 

(averaged) than the NAVSTAR in the range rate only and angles only cases. This may be due to the 

eccentricity of the Molinaya orbit. Future work will investigate this matter further. 

To understand the full capabilities of the LMF used in the paper, future work should involve the 

testing of real satellite data. While adding noise to simulated data gives a feel for what could be seen 

at a ground site, real observations would challenge the algorithm and discovering the trajectory of a 

real satellite with a least-squares algorithm would be all the more rewarding. 
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6. CONCLUSION AND FUTURE WORK 

 

 
The goal of this investigation included applying the Levenberg-Marquardt least-squares Filter 

(LMF) on noisy Doppler shift data to determine the orbit of a given satellite. The focus was to 

determine if noisy Doppler data could be used to produce an accurate – or better put, a “best 

estimate” – for the state vector of the satellite at epoch. Previous studies using range rate 

information for the orbit determination problem, e.g. work done by Nick Komaroff (personal 

conversation, December 22, 1993), relied on self-manufacture hardware to capture the Doppler shift 

from the downlink signal of a satellite. 

Komaroff (personal conversation, 1993), designed a circuit around a crystal discriminator, which 

was integrated into ground station hardware. This hardware allowed an output of the received signal 

frequency over time, which was converted to range rate data using methods described in in this 

report. While the range rate data in this report is simulated, the present study is still designed to 

follow the goal of Komaroff (personal conversation, 1993). While real data was not present in the 

present investigation, it is worth noting that current software can give this frequency over time 

without the need for the additional hardware. 

For this project, the LMF was chosen for its reputation for accurately predicting a state vector from 

noisy observations. An orbit propagator was used to generate state vectors over the duration of the 

pass time of a satellite, and data was calculated from each state vector. To test the proficiency of the 

filter, observations were simulated from LEO, MEO, and Molinaya orbit test cases. For each case, 

the filter corrected the initial “estimated” state to the supplied noisy data. Three combinations of 

data were used in this process. 

To compare the results of the focus case, range rate, additional cases with various data types were 
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included in the analysis. The first additional case had data comprised of range rate, azimuth, and 

elevation. Because this data set had the most data type, poor resolution in the range rate only case 

could be quantified. The second added case used only azimuth and elevation angles. Should this 

case have outperformed the previous case and the range rate only case, an understanding of how the 

range rate impacted the results could be acquired. 

Throughout the building of the LMF software, many iterations of the filter were attempted and 

failed. Initial builds allowed convergence on the orbit of the ISS and at least some correction for 

NAVSTAR, but it diverged consistently with the Molinaya orbit. When the addition of data from a 

subsequent pass only made state vector estimates worse, the program was overhauled and netted 

positive results. In addition to reformatting the software, several additions were made to improve 

performance of the filter. 

While the small step sizes used for the ISS allowed a quick convergence, the orbits of NAVSTAR 

and MOLNIYA require larger steps to cover their arch. This large step size causes increased 

computational cost when calling the Orbit Generating Function (OGF). For each iteration, the OGF 

is called three times, once to calculate data for the current estimated orbit, once for the Jacobian, and 

again to test the estimated state vector with added corrections. The Broyden rank-1 Jacobian, 

suggested by Transtrum and Sentha [27] decreases the amount of OGF calls by estimating the 

Jacobian over several iterations using previous Jacobian elements. Testing this addition proved that 

similar data was provided using the rank-1 approximation, so it was implemented into the software. 

The MatLab code for the newest build can be found in Appendix D. 

It is determined that the Levenberg-Marquardt filter is quite capable of providing a state estimate for 

a satellite using topocentric range rate. If range rate is calculated from the Doppler data of a given 

satellite, this filter will give its user enough information to find the trajectory of the satellite. 
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6.1 FUTURE WORK 
 

The successful outcome of this filter begs that it be used with real data. Future work should test the 

performance of the filter when given processed Doppler data. Initial testing should include data 

from satellites with known trajectories. If the filter proves successful, more difficult targets could be 

studied. Should it be desired, several modifications could still be made to the software. 

While the filter has seen successful testing with simulated data, the Orbit Propagator has not been 

tested for its accuracy. Indeed, the OP simulated orbital perturbations, i.e., J2, atmosphere, solar 

pressure, etc., but results have not been compared to higher end software. Additionally, data 

extracted from the orbit propagator used in “get_obs.m” did not match data provided by GP. Future 

work should conduct these tests to ensure any accrued error found when using real data does not 

stem from this OP. 

Future work could also include modifications to allow for two-way Doppler processing. An added 

function to perform this processing could allow the filter to estimate a state vector for a non- 

communicating satellite. 
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APPENDIX A. SIMULATED DATA 

 
ISS MEASUREMENTS FROM TRUTH ORBIT 

 

Least-squares orbit determination 

Measurements from “truth” orbit 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/12 05:36:44.000 181.450 5.710 -5.404 
2019/05/12 05:37: 4.000 178.368 7.068 -5.158 

2019/05/12 05:37:24.000 174.863 8.469 -4.859 

2019/05/12 05:37:44.000 170.873 9.898 -4.498 

2019/05/12 05:38: 4.000 166.333 11.329 -4.065 

2019/05/12 05:38:24.000 161.190 12.722 -3.548 

2019/05/12 05:38:44.000 155.412 14.017 -2.941 

2019/05/12 05:39: 4.000 149.009 15.139 -2.243 

2019/05/12 05:39:24.000 142.058 15.997 -1.464 

2019/05/12 05:39:44.000 134.706 16.512 -0.625 

2019/05/12 05:40: 4.000 127.172 16.625 0.241 

2019/05/12 05:40:24.000 119.706 16.326 1.097 

2019/05/12 05:40:44.000 112.549 15.649 1.907 

2019/05/12 05:41: 4.000 105.883 14.668 2.643 

2019/05/12 05:41:24.000 99.817 13.470 3.291 

2019/05/12 05:41:44.000 94.389 12.137 3.848 

2019/05/12 05:42: 4.000 89.585 10.737 4.319 

2019/05/12 05:42:24.000 85.359 9.320 4.711 

2019/05/12 05:42:44.000 81.649 7.918 5.037 

2019/05/12 05:43: 4.000 78.393 6.551 5.306 

2019/05/12 05:43:24.000 75.528 5.228 5.529 

2019/05/12 05:43:44.000 73.001 3.955 5.713 

2019/05/12 05:44: 4.000 70.761 2.731 5.865 

2019/05/12 05:44:24.000 68.770 1.554 5.991 
2019/05/12 05:44:44.000 66.990 0.422 6.096 
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ISS MEASUREMENTS WITH ADDED NOISE 

Least-squares orbit determination 

Measurements with added noise 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/12 05:36:44.000 181.458 5.710 -5.395 

2019/05/12 05:37: 4.000 178.369 7.073 -5.165 

2019/05/12 05:37:24.000 174.860 8.475 -4.862 

2019/05/12 05:37:44.000 170.876 9.896 -4.499 

2019/05/12 05:38: 4.000 166.326 11.323 -4.060 

2019/05/12 05:38:24.000 161.190 12.718 -3.551 

2019/05/12 05:38:44.000 155.416 14.017 -2.938 

2019/05/12 05:39: 4.000 149.011 15.142 -2.241 

2019/05/12 05:39:24.000 142.051 15.999 -1.458 

2019/05/12 05:39:44.000 134.710 16.500 -0.626 

2019/05/12 05:40: 4.000 127.170 16.627 0.239 

2019/05/12 05:40:24.000 119.706 16.334 1.101 

2019/05/12 05:40:44.000 112.551 15.645 1.906 

2019/05/12 05:41: 4.000 105.884 14.666 2.641 

2019/05/12 05:41:24.000 99.819 13.478 3.279 

2019/05/12 05:41:44.000 94.384 12.142 3.851 

2019/05/12 05:42: 4.000 89.584 10.739 4.314 

2019/05/12 05:42:24.000 85.353 9.322 4.719 

2019/05/12 05:42:44.000 81.653 7.916 5.041 

2019/05/12 05:43: 4.000 78.392 6.547 5.304 

2019/05/12 05:43:24.000 75.525 5.227 5.531 

2019/05/12 05:43:44.000 72.995 3.957 5.718 

2019/05/12 05:44: 4.000 70.762 2.734 5.865 

2019/05/12 05:44:24.000 68.780 1.559 5.982 
2019/05/12 05:44:44.000 66.991 0.413 6.101 
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NAVSTAR-77 MEASUREMENTS FROM TRUTH ORBIT 

 

Least-squares orbit determination 

Measurements from “truth” orbit (no added noise) 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/12 18:16:22.000 169.059 -11.410 0.716 

2019/05/12 18:20:34.000 168.895 -9.674 0.715 

2019/05/12 18:24:46.000 168.702 -7.963 0.714 

2019/05/12 18:28:58.000 168.480 -6.276 0.712 

2019/05/12 18:33:10.000 168.227 -4.615 0.708 

2019/05/12 18:37:22.000 167.944 -2.979 0.703 

2019/05/12 18:41:34.000 167.628 -1.369 0.698 

2019/05/12 18:45:46.000 167.280 0.214 0.691 

2019/05/12 18:49:58.000 166.898 1.770 0.683 

2019/05/12 18:54:10.000 166.482 3.298 0.674 

2019/05/12 18:58:22.000 166.030 4.798 0.665 

2019/05/12 19:02:34.000 165.543 6.269 0.654 

2019/05/12 19:06:46.000 165.018 7.711 0.643 

2019/05/12 19:10:58.000 164.455 9.122 0.630 

2019/05/12 19:15:10.000 163.853 10.502 0.617 

2019/05/12 19:19:22.000 163.212 11.850 0.603 

2019/05/12 19:23:34.000 162.530 13.166 0.588 

2019/05/12 19:27:46.000 161.806 14.448 0.573 

2019/05/12 19:31:58.000 161.041 15.696 0.557 

2019/05/12 19:36:10.000 160.232 16.908 0.540 

2019/05/12 19:40:22.000 159.380 18.083 0.522 

2019/05/12 19:44:34.000 158.484 19.222 0.504 

2019/05/12 19:48:46.000 157.544 20.322 0.485 

2019/05/12 19:52:58.000 156.559 21.382 0.466 

2019/05/12 19:57:10.000 155.528 22.401 0.446 

2019/05/12 20:01:22.000 154.453 23.379 0.425 

2019/05/12 20:05:34.000 153.332 24.314 0.405 

2019/05/12 20:09:46.000 152.166 25.204 0.383 

2019/05/12 20:13:58.000 150.956 26.050 0.362 

2019/05/12 20:18:10.000 149.702 26.849 0.340 

2019/05/12 20:22:22.000 148.405 27.600 0.318 

2019/05/12 20:26:34.000 147.065 28.303 0.295 

2019/05/12 20:30:46.000 145.685 28.956 0.273 

2019/05/12 20:34:58.000 144.265 29.558 0.250 

2019/05/12 20:39:10.000 142.808 30.109 0.227 

2019/05/12 20:43:22.000 141.315 30.607 0.203 

2019/05/12 20:47:34.000 139.789 31.052 0.180 

2019/05/12 20:51:46.000 138.231 31.444 0.157 

2019/05/12 20:55:58.000 136.645 31.781 0.133 

2019/05/12 21:00:10.000 135.033 32.064 0.110 
2019/05/12 21:04:22.000 133.399 32.292 0.087 
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2019/05/12 21:08:34.000 131.744 32.465 0.064 

2019/05/12 21:12:46.000 130.072 32.584 0.041 

2019/05/12 21:16:58.000 128.387 32.648 0.018 

2019/05/12 21:21:10.000 126.690 32.658 -0.004 

2019/05/12 21:25:22.000 124.986 32.614 -0.027 

2019/05/12 21:29:34.000 123.277 32.518 -0.049 

2019/05/12 21:33:46.000 121.566 32.369 -0.070 

2019/05/12 21:37:58.000 119.856 32.171 -0.091 

2019/05/12 21:42:10.000 118.149 31.922 -0.112 

2019/05/12 21:46:22.000 116.448 31.625 -0.132 

2019/05/12 21:50:34.000 114.753 31.282 -0.152 

2019/05/12 21:54:46.000 113.069 30.893 -0.172 

2019/05/12 21:58:58.000 111.395 30.460 -0.190 

2019/05/12 22:03:10.000 109.733 29.986 -0.208 

2019/05/12 22:07:22.000 108.084 29.472 -0.226 

2019/05/12 22:11:34.000 106.450 28.920 -0.243 

2019/05/12 22:15:46.000 104.830 28.332 -0.259 

2019/05/12 22:19:58.000 103.225 27.710 -0.274 

2019/05/12 22:24:10.000 101.635 27.056 -0.288 

2019/05/12 22:28:22.000 100.059 26.372 -0.302 

2019/05/12 22:32:34.000 98.498 25.660 -0.315 

2019/05/12 22:36:46.000 96.951 24.923 -0.327 

2019/05/12 22:40:58.000 95.418 24.163 -0.338 

2019/05/12 22:45:10.000 93.897 23.382 -0.347 

2019/05/12 22:49:22.000 92.387 22.582 -0.356 

2019/05/12 22:53:34.000 90.888 21.765 -0.364 

2019/05/12 22:57:46.000 89.398 20.934 -0.371 

2019/05/12 23:01:58.000 87.916 20.091 -0.377 

2019/05/12 23:06:10.000 86.441 19.238 -0.382 

2019/05/12 23:10:22.000 84.972 18.377 -0.385 

2019/05/12 23:14:34.000 83.506 17.512 -0.388 

2019/05/12 23:18:46.000 82.044 16.644 -0.389 

2019/05/12 23:22:58.000 80.583 15.775 -0.389 

2019/05/12 23:27:10.000 79.122 14.908 -0.388 

2019/05/12 23:31:22.000 77.660 14.046 -0.386 

2019/05/12 23:35:34.000 76.196 13.191 -0.382 

2019/05/12 23:39:46.000 74.728 12.345 -0.377 

2019/05/12 23:43:58.000 73.255 11.510 -0.371 

2019/05/12 23:48:10.000 71.777 10.690 -0.364 

2019/05/12 23:52:22.000 70.292 9.887 -0.356 

2019/05/12 23:56:34.000 68.799 9.103 -0.346 

2019/05/13 00:00:46.000 67.297 8.341 -0.335 

2019/05/13 00:04:58.000 65.787 7.603 -0.324 

2019/05/13 00:09:10.000 64.267 6.893 -0.310 

2019/05/13 00:13:22.000 62.738 6.211 -0.296 

2019/05/13 00:17:34.000 61.199 5.562 -0.281 
2019/05/13 00:21:46.000 59.650 4.947 -0.265 
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2019/05/13 00:25:58.000 58.091 4.369 -0.247 

2019/05/13 00:30:10.000 56.523 3.830 -0.229 

2019/05/13 00:34:22.000 54.947 3.333 -0.209 

2019/05/13 00:38:34.000 53.363 2.879 -0.189 

2019/05/13 00:42:46.000 51.772 2.472 -0.168 

2019/05/13 00:46:58.000 50.176 2.112 -0.146 

2019/05/13 00:51:10.000 48.575 1.801 -0.124 

2019/05/13 00:55:22.000 46.972 1.542 -0.101 

2019/05/13 00:59:34.000 45.368 1.336 -0.077 

2019/05/13 01:03:46.000 43.764 1.184 -0.053 

2019/05/13 01:07:58.000 42.163 1.087 -0.028 
2019/05/13 01:12:10.000 40.568 1.046 -0.003 
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NAVSTAR MEASUREMENTS WITH ADDED NOISE 

 

Least-squares orbit determination 

Measurements with added noise 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/12 18:16:22.000 169.060 -11.407 0.716 

2019/05/12 18:20:34.000 168.896 -9.676 0.715 

2019/05/12 18:24:46.000 168.700 -7.957 0.714 

2019/05/12 18:28:58.000 168.482 -6.268 0.712 

2019/05/12 18:33:10.000 168.231 -4.608 0.708 

2019/05/12 18:37:22.000 167.937 -2.980 0.703 

2019/05/12 18:41:34.000 167.633 -1.360 0.698 

2019/05/12 18:45:46.000 167.271 0.214 0.691 

2019/05/12 18:49:58.000 166.908 1.771 0.683 

2019/05/12 18:54:10.000 166.479 3.291 0.674 

2019/05/12 18:58:22.000 166.030 4.800 0.665 

2019/05/12 19:02:34.000 165.544 6.269 0.654 

2019/05/12 19:06:46.000 165.018 7.714 0.643 

2019/05/12 19:10:58.000 164.460 9.114 0.630 

2019/05/12 19:15:10.000 163.856 10.499 0.617 

2019/05/12 19:19:22.000 163.215 11.847 0.603 

2019/05/12 19:23:34.000 162.536 13.171 0.588 

2019/05/12 19:27:46.000 161.802 14.445 0.573 

2019/05/12 19:31:58.000 161.049 15.700 0.557 

2019/05/12 19:36:10.000 160.223 16.910 0.540 

2019/05/12 19:40:22.000 159.382 18.079 0.522 

2019/05/12 19:44:34.000 158.478 19.223 0.504 

2019/05/12 19:48:46.000 157.538 20.325 0.485 

2019/05/12 19:52:58.000 156.558 21.373 0.466 

2019/05/12 19:57:10.000 155.532 22.397 0.446 

2019/05/12 20:01:22.000 154.450 23.389 0.425 

2019/05/12 20:05:34.000 153.331 24.313 0.405 

2019/05/12 20:09:46.000 152.171 25.211 0.383 

2019/05/12 20:13:58.000 150.953 26.046 0.362 

2019/05/12 20:18:10.000 149.698 26.851 0.340 

2019/05/12 20:22:22.000 148.403 27.602 0.318 

2019/05/12 20:26:34.000 147.071 28.308 0.295 

2019/05/12 20:30:46.000 145.681 28.951 0.273 

2019/05/12 20:34:58.000 144.269 29.560 0.250 

2019/05/12 20:39:10.000 142.812 30.110 0.227 

2019/05/12 20:43:22.000 141.307 30.603 0.203 

2019/05/12 20:47:34.000 139.786 31.051 0.180 

2019/05/12 20:51:46.000 138.232 31.444 0.157 

2019/05/12 20:55:58.000 136.642 31.783 0.133 

2019/05/12 21:00:10.000 135.034 32.063 0.110 

2019/05/12 21:04:22.000 133.397 32.285 0.087 
2019/05/12 21:08:34.000 131.749 32.472 0.064 
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2019/05/12 21:12:46.000 130.075 32.579 0.041 

2019/05/12 21:16:58.000 128.389 32.642 0.018 

2019/05/12 21:21:10.000 126.692 32.660 -0.004 

2019/05/12 21:25:22.000 124.991 32.620 -0.027 

2019/05/12 21:29:34.000 123.281 32.512 -0.048 

2019/05/12 21:33:46.000 121.571 32.364 -0.070 

2019/05/12 21:37:58.000 119.851 32.185 -0.091 

2019/05/12 21:42:10.000 118.148 31.920 -0.112 

2019/05/12 21:46:22.000 116.450 31.621 -0.132 

2019/05/12 21:50:34.000 114.756 31.281 -0.152 

2019/05/12 21:54:46.000 113.068 30.890 -0.172 

2019/05/12 21:58:58.000 111.395 30.455 -0.190 

2019/05/12 22:03:10.000 109.738 29.983 -0.208 

2019/05/12 22:07:22.000 108.082 29.467 -0.226 

2019/05/12 22:11:34.000 106.448 28.928 -0.243 

2019/05/12 22:15:46.000 104.833 28.321 -0.259 

2019/05/12 22:19:58.000 103.221 27.708 -0.274 

2019/05/12 22:24:10.000 101.630 27.054 -0.288 

2019/05/12 22:28:22.000 100.056 26.377 -0.302 

2019/05/12 22:32:34.000 98.496 25.654 -0.315 

2019/05/12 22:36:46.000 96.953 24.917 -0.327 

2019/05/12 22:40:58.000 95.418 24.170 -0.338 

2019/05/12 22:45:10.000 93.897 23.386 -0.347 

2019/05/12 22:49:22.000 92.388 22.580 -0.356 

2019/05/12 22:53:34.000 90.894 21.756 -0.364 

2019/05/12 22:57:46.000 89.412 20.935 -0.371 

2019/05/12 23:01:58.000 87.919 20.089 -0.377 

2019/05/12 23:06:10.000 86.435 19.228 -0.382 

2019/05/12 23:10:22.000 84.979 18.370 -0.385 

2019/05/12 23:14:34.000 83.502 17.511 -0.388 

2019/05/12 23:18:46.000 82.038 16.645 -0.389 

2019/05/12 23:22:58.000 80.583 15.772 -0.389 

2019/05/12 23:27:10.000 79.125 14.903 -0.388 

2019/05/12 23:31:22.000 77.657 14.050 -0.386 

2019/05/12 23:35:34.000 76.197 13.193 -0.382 

2019/05/12 23:39:46.000 74.735 12.347 -0.377 

2019/05/12 23:43:58.000 73.255 11.512 -0.371 

2019/05/12 23:48:10.000 71.780 10.681 -0.364 

2019/05/12 23:52:22.000 70.291 9.881 -0.356 

2019/05/12 23:56:34.000 68.802 9.108 -0.346 

2019/05/13 00:00:46.000 67.303 8.336 -0.335 

2019/05/13 00:04:58.000 65.785 7.609 -0.324 

2019/05/13 00:09:10.000 64.268 6.891 -0.310 

2019/05/13 00:13:22.000 62.737 6.212 -0.296 

2019/05/13 00:17:34.000 61.203 5.560 -0.281 

2019/05/13 00:21:46.000 59.646 4.947 -0.264 
2019/05/13 00:25:58.000 58.092 4.369 -0.247 
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2019/05/13 00:30:10.000 56.527 3.843 -0.229 

2019/05/13 00:34:22.000 54.953 3.327 -0.209 

2019/05/13 00:38:34.000 53.361 2.870 -0.189 

2019/05/13 00:42:46.000 51.768 2.478 -0.168 

2019/05/13 00:46:58.000 50.184 2.123 -0.146 

2019/05/13 00:51:10.000 48.571 1.806 -0.124 

2019/05/13 00:55:22.000 46.969 1.549 -0.101 

2019/05/13 00:59:34.000 45.373 1.334 -0.077 

2019/05/13 01:03:46.000 43.752 1.183 -0.053 

2019/05/13 01:07:58.000 42.157 1.081 -0.028 
2019/05/13 01:12:10.000 40.565 1.039 -0.003 
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MOLNIYA 3-50 MEASUREMENTS FROM TRUTH ORBIT 

 

Least-squares orbit determination 

Measurements 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/13 03:08:26.000 76.293 70.304 2.918 

2019/05/13 03:14:26.000 69.776 70.121 2.825 

2019/05/13 03:20:26.000 64.098 69.785 2.731 

2019/05/13 03:26:26.000 59.166 69.351 2.638 

2019/05/13 03:32:26.000 54.879 68.858 2.547 

2019/05/13 03:38:26.000 51.142 68.331 2.458 

2019/05/13 03:44:26.000 47.870 67.790 2.371 

2019/05/13 03:50:26.000 44.993 67.245 2.286 

2019/05/13 03:56:26.000 42.450 66.706 2.204 

2019/05/13 04:02:26.000 40.192 66.177 2.123 

2019/05/13 04:08:26.000 38.178 65.662 2.045 

2019/05/13 04:14:26.000 36.374 65.164 1.968 

2019/05/13 04:20:26.000 34.752 64.683 1.893 

2019/05/13 04:26:26.000 33.289 64.220 1.820 

2019/05/13 04:32:26.000 31.965 63.776 1.749 

2019/05/13 04:38:26.000 30.765 63.351 1.679 

2019/05/13 04:44:26.000 29.675 62.945 1.611 

2019/05/13 04:50:26.000 28.682 62.557 1.544 

2019/05/13 04:56:26.000 27.777 62.187 1.479 

2019/05/13 05:02:26.000 26.951 61.835 1.414 

2019/05/13 05:08:26.000 26.198 61.501 1.351 

2019/05/13 05:14:26.000 25.509 61.183 1.289 

2019/05/13 05:20:26.000 24.880 60.883 1.228 

2019/05/13 05:26:26.000 24.306 60.599 1.167 

2019/05/13 05:32:26.000 23.783 60.331 1.108 

2019/05/13 05:38:26.000 23.306 60.079 1.049 

2019/05/13 05:44:26.000 22.872 59.843 0.991 

2019/05/13 05:50:26.000 22.478 59.622 0.934 

2019/05/13 05:56:26.000 22.122 59.417 0.878 

2019/05/13 06:02:26.000 21.801 59.226 0.822 

2019/05/13 06:08:26.000 21.513 59.050 0.766 

2019/05/13 06:14:26.000 21.256 58.889 0.711 

2019/05/13 06:20:26.000 21.028 58.743 0.657 

2019/05/13 06:26:26.000 20.827 58.611 0.603 

2019/05/13 06:32:26.000 20.652 58.493 0.549 

2019/05/13 06:38:26.000 20.503 58.389 0.496 

2019/05/13 06:44:26.000 20.376 58.300 0.443 

2019/05/13 06:50:26.000 20.273 58.225 0.390 

2019/05/13 06:56:26.000 20.191 58.164 0.338 

2019/05/13 07:02:26.000 20.129 58.117 0.285 

2019/05/13 07:08:26.000 20.088 58.085 0.233 
2019/05/13 07:14:26.000 20.066 58.066 0.181 
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2019/05/13 07:20:26.000 20.062 58.062 0.129 

2019/05/13 07:26:26.000 20.077 58.072 0.077 

2019/05/13 07:32:26.000 20.110 58.096 0.026 

2019/05/13 07:38:26.000 20.159 58.134 -0.026 

2019/05/13 07:44:26.000 20.226 58.187 -0.078 

2019/05/13 07:50:26.000 20.310 58.255 -0.130 

2019/05/13 07:56:26.000 20.410 58.337 -0.182 

2019/05/13 08:02:26.000 20.528 58.433 -0.234 

2019/05/13 08:08:26.000 20.661 58.545 -0.286 

2019/05/13 08:14:26.000 20.812 58.672 -0.338 

2019/05/13 08:20:26.000 20.980 58.814 -0.391 

2019/05/13 08:26:26.000 21.165 58.972 -0.443 

2019/05/13 08:32:26.000 21.368 59.145 -0.496 

2019/05/13 08:38:26.000 21.589 59.334 -0.550 

2019/05/13 08:44:26.000 21.830 59.539 -0.603 

2019/05/13 08:50:26.000 22.090 59.760 -0.657 

2019/05/13 08:56:26.000 22.372 59.998 -0.712 

2019/05/13 09:02:26.000 22.676 60.253 -0.767 

2019/05/13 09:08:26.000 23.003 60.525 -0.822 

2019/05/13 09:14:26.000 23.357 60.815 -0.878 

2019/05/13 09:20:26.000 23.737 61.122 -0.934 

2019/05/13 09:26:26.000 24.147 61.448 -0.991 

2019/05/13 09:32:26.000 24.590 61.793 -1.049 

2019/05/13 09:38:26.000 25.069 62.156 -1.108 

2019/05/13 09:44:26.000 25.588 62.540 -1.167 

2019/05/13 09:50:26.000 26.151 62.943 -1.227 

2019/05/13 09:56:26.000 26.763 63.366 -1.288 

2019/05/13 10:02:26.000 27.431 63.811 -1.349 

2019/05/13 10:08:26.000 28.161 64.276 -1.412 

2019/05/13 10:14:26.000 28.963 64.764 -1.476 

2019/05/13 10:20:26.000 29.848 65.273 -1.541 

2019/05/13 10:26:26.000 30.826 65.804 -1.607 

2019/05/13 10:32:26.000 31.915 66.357 -1.674 

2019/05/13 10:38:26.000 33.130 66.931 -1.743 

2019/05/13 10:44:26.000 34.495 67.527 -1.813 

2019/05/13 10:50:26.000 36.035 68.142 -1.884 

2019/05/13 10:56:26.000 37.783 68.774 -1.957 

2019/05/13 11:02:26.000 39.780 69.421 -2.031 

2019/05/13 11:08:26.000 42.072 70.076 -2.108 

2019/05/13 11:14:26.000 44.718 70.733 -2.185 

2019/05/13 11:20:26.000 47.788 71.380 -2.264 

2019/05/13 11:26:26.000 51.364 72.002 -2.345 

2019/05/13 11:32:26.000 55.537 72.576 -2.427 

2019/05/13 11:38:26.000 60.399 73.070 -2.510 

2019/05/13 11:44:26.000 66.030 73.439 -2.594 

2019/05/13 11:50:26.000 72.467 73.625 -2.678 
2019/05/13 11:56:26.000 79.669 73.553 -2.762 
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2019/05/13 12:02:26.000 87.480 73.134 -2.843 

2019/05/13 12:08:26.000 95.617 72.266 -2.919 

2019/05/13 12:14:26.000 103.715 70.846 -2.988 

2019/05/13 12:20:26.000 111.410 68.764 -3.043 

2019/05/13 12:26:26.000 118.423 65.903 -3.076 

2019/05/13 12:32:26.000 124.598 62.122 -3.076 

2019/05/13 12:38:26.000 129.894 57.236 -3.020 

2019/05/13 12:44:26.000 134.343 50.999 -2.879 

2019/05/13 12:50:26.000 138.018 43.094 -2.604 

2019/05/13 12:56:26.000 140.997 33.164 -2.130 
2019/05/13 13:02:26.000 143.350 20.932 -1.389 
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MOLNIYA 3-50 MEASUREMENTS WITH ADDED NOISE 

 

Least-squares orbit determination 

Measurements 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/13 03:08:26.000 76.298 70.308 2.919 

2019/05/13 03:14:26.000 69.778 70.118 2.833 

2019/05/13 03:20:26.000 64.098 69.794 2.732 

2019/05/13 03:26:26.000 59.170 69.344 2.635 

2019/05/13 03:32:26.000 54.885 68.855 2.550 

2019/05/13 03:38:26.000 51.140 68.331 2.452 

2019/05/13 03:44:26.000 47.864 67.794 2.371 

2019/05/13 03:50:26.000 44.989 67.241 2.291 

2019/05/13 03:56:26.000 42.450 66.708 2.206 

2019/05/13 04:02:26.000 40.196 66.179 2.116 

2019/05/13 04:08:26.000 38.180 65.668 2.048 

2019/05/13 04:14:26.000 36.362 65.162 1.966 

2019/05/13 04:20:26.000 34.753 64.680 1.893 

2019/05/13 04:26:26.000 33.297 64.224 1.822 

2019/05/13 04:32:26.000 31.961 63.776 1.750 

2019/05/13 04:38:26.000 30.762 63.350 1.681 

2019/05/13 04:44:26.000 29.683 62.933 1.606 

2019/05/13 04:50:26.000 28.688 62.560 1.543 

2019/05/13 04:56:26.000 27.779 62.182 1.473 

2019/05/13 05:02:26.000 26.953 61.843 1.418 

2019/05/13 05:08:26.000 26.195 61.505 1.350 

2019/05/13 05:14:26.000 25.505 61.181 1.286 

2019/05/13 05:20:26.000 24.879 60.886 1.222 

2019/05/13 05:26:26.000 24.308 60.605 1.168 

2019/05/13 05:32:26.000 23.786 60.331 1.118 

2019/05/13 05:38:26.000 23.310 60.070 1.049 

2019/05/13 05:44:26.000 22.863 59.848 0.993 

2019/05/13 05:50:26.000 22.482 59.627 0.943 

2019/05/13 05:56:26.000 22.121 59.416 0.881 

2019/05/13 06:02:26.000 21.806 59.221 0.819 

2019/05/13 06:08:26.000 21.513 59.038 0.772 

2019/05/13 06:14:26.000 21.251 58.895 0.707 

2019/05/13 06:20:26.000 21.031 58.747 0.656 

2019/05/13 06:26:26.000 20.830 58.610 0.606 

2019/05/13 06:32:26.000 20.647 58.489 0.556 

2019/05/13 06:38:26.000 20.500 58.391 0.488 

2019/05/13 06:44:26.000 20.374 58.296 0.442 

2019/05/13 06:50:26.000 20.278 58.230 0.396 

2019/05/13 06:56:26.000 20.192 58.167 0.332 

2019/05/13 07:02:26.000 20.127 58.124 0.290 

2019/05/13 07:08:26.000 20.090 58.078 0.235 
2019/05/13 07:14:26.000 20.068 58.064 0.183 



81  

2019/05/13 07:20:26.000 20.075 58.059 0.121 

2019/05/13 07:26:26.000 20.064 58.068 0.074 

2019/05/13 07:32:26.000 20.104 58.106 0.031 

2019/05/13 07:38:26.000 20.163 58.136 -0.040 

2019/05/13 07:44:26.000 20.235 58.187 -0.082 

2019/05/13 07:50:26.000 20.300 58.255 -0.119 

2019/05/13 07:56:26.000 20.412 58.341 -0.183 

2019/05/13 08:02:26.000 20.533 58.426 -0.229 

2019/05/13 08:08:26.000 20.664 58.544 -0.285 

2019/05/13 08:14:26.000 20.820 58.672 -0.334 

2019/05/13 08:20:26.000 20.973 58.820 -0.382 

2019/05/13 08:26:26.000 21.162 58.966 -0.448 

2019/05/13 08:32:26.000 21.371 59.141 -0.497 

2019/05/13 08:38:26.000 21.582 59.339 -0.554 

2019/05/13 08:44:26.000 21.834 59.542 -0.604 

2019/05/13 08:50:26.000 22.092 59.758 -0.659 

2019/05/13 08:56:26.000 22.378 59.998 -0.717 

2019/05/13 09:02:26.000 22.684 60.248 -0.765 

2019/05/13 09:08:26.000 22.999 60.523 -0.820 

2019/05/13 09:14:26.000 23.362 60.813 -0.876 

2019/05/13 09:20:26.000 23.736 61.122 -0.940 

2019/05/13 09:26:26.000 24.147 61.455 -0.996 

2019/05/13 09:32:26.000 24.584 61.800 -1.043 

2019/05/13 09:38:26.000 25.073 62.149 -1.100 

2019/05/13 09:44:26.000 25.585 62.533 -1.170 

2019/05/13 09:50:26.000 26.152 62.946 -1.226 

2019/05/13 09:56:26.000 26.761 63.375 -1.291 

2019/05/13 10:02:26.000 27.431 63.807 -1.347 

2019/05/13 10:08:26.000 28.152 64.280 -1.418 

2019/05/13 10:14:26.000 28.963 64.758 -1.482 

2019/05/13 10:20:26.000 29.838 65.268 -1.540 

2019/05/13 10:26:26.000 30.829 65.811 -1.604 

2019/05/13 10:32:26.000 31.904 66.352 -1.675 

2019/05/13 10:38:26.000 33.117 66.930 -1.746 

2019/05/13 10:44:26.000 34.496 67.530 -1.808 

2019/05/13 10:50:26.000 36.034 68.141 -1.877 

2019/05/13 10:56:26.000 37.793 68.772 -1.956 

2019/05/13 11:02:26.000 39.775 69.421 -2.028 

2019/05/13 11:08:26.000 42.069 70.077 -2.107 

2019/05/13 11:14:26.000 44.715 70.730 -2.176 

2019/05/13 11:20:26.000 47.783 71.378 -2.272 

2019/05/13 11:26:26.000 51.364 72.004 -2.348 

2019/05/13 11:32:26.000 55.539 72.573 -2.421 

2019/05/13 11:38:26.000 60.399 73.074 -2.500 

2019/05/13 11:44:26.000 66.032 73.446 -2.593 

2019/05/13 11:50:26.000 72.465 73.620 -2.680 
2019/05/13 11:56:26.000 79.675 73.557 -2.767 



82  

2019/05/13 12:02:26.000 87.479 73.127 -2.841 

2019/05/13 12:08:26.000 95.622 72.262 -2.933 

2019/05/13 12:14:26.000 103.718 70.862 -2.985 

2019/05/13 12:20:26.000 111.411 68.766 -3.038 

2019/05/13 12:26:26.000 118.433 65.911 -3.077 

2019/05/13 12:32:26.000 124.598 62.123 -3.080 

2019/05/13 12:38:26.000 129.899 57.237 -3.013 

2019/05/13 12:44:26.000 134.342 51.007 -2.888 

2019/05/13 12:50:26.000 138.027 43.086 -2.609 

2019/05/13 12:56:26.000 140.997 33.157 -2.128 
2019/05/13 13:02:26.000 143.353 20.938 -1.391 
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MOLNIYA 3-50 MEASUREMENTS FROM ESTIMATED ORBIT 

 

Least-squares orbit determination 

Measurements 
Date UTC Az(deg) El(deg) Range rate (km/s) 

2019/05/13 03:08:26.000 76.226 70.299 2.915 

2019/05/13 03:14:26.000 69.714 70.115 2.822 

2019/05/13 03:20:26.000 64.041 69.777 2.728 

2019/05/13 03:26:26.000 59.113 69.342 2.635 

2019/05/13 03:32:26.000 54.829 68.847 2.544 

2019/05/13 03:38:26.000 51.095 68.319 2.455 

2019/05/13 03:44:26.000 47.827 67.776 2.367 

2019/05/13 03:50:26.000 44.952 67.231 2.282 

2019/05/13 03:56:26.000 42.412 66.690 2.200 

2019/05/13 04:02:26.000 40.156 66.160 2.119 

2019/05/13 04:08:26.000 38.144 65.644 2.040 

2019/05/13 04:14:26.000 36.342 65.144 1.964 

2019/05/13 04:20:26.000 34.723 64.662 1.889 

2019/05/13 04:26:26.000 33.262 64.198 1.816 

2019/05/13 04:32:26.000 31.941 63.753 1.744 

2019/05/13 04:38:26.000 30.743 63.327 1.674 

2019/05/13 04:44:26.000 29.655 62.919 1.606 

2019/05/13 04:50:26.000 28.665 62.530 1.539 

2019/05/13 04:56:26.000 27.762 62.159 1.473 

2019/05/13 05:02:26.000 26.939 61.805 1.409 

2019/05/13 05:08:26.000 26.188 61.470 1.346 

2019/05/13 05:14:26.000 25.502 61.151 1.283 

2019/05/13 05:20:26.000 24.876 60.849 1.222 

2019/05/13 05:26:26.000 24.305 60.564 1.162 

2019/05/13 05:32:26.000 23.784 60.295 1.102 

2019/05/13 05:38:26.000 23.310 60.042 1.043 

2019/05/13 05:44:26.000 22.880 59.804 0.985 

2019/05/13 05:50:26.000 22.490 59.582 0.928 

2019/05/13 05:56:26.000 22.137 59.375 0.871 

2019/05/13 06:02:26.000 21.820 59.183 0.815 

2019/05/13 06:08:26.000 21.535 59.006 0.760 

2019/05/13 06:14:26.000 21.282 58.844 0.705 

2019/05/13 06:20:26.000 21.057 58.696 0.650 

2019/05/13 06:26:26.000 20.861 58.563 0.596 

2019/05/13 06:32:26.000 20.691 58.444 0.542 

2019/05/13 06:38:26.000 20.546 58.339 0.488 

2019/05/13 06:44:26.000 20.424 58.249 0.435 

2019/05/13 06:50:26.000 20.325 58.172 0.382 

2019/05/13 06:56:26.000 20.248 58.110 0.330 

2019/05/13 07:02:26.000 20.192 58.063 0.277 

2019/05/13 07:08:26.000 20.156 58.029 0.225 
2019/05/13 07:14:26.000 20.140 58.009 0.173 
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2019/05/13 07:20:26.000 20.143 58.004 0.121 

2019/05/13 07:26:26.000 20.164 58.013 0.068 

2019/05/13 07:32:26.000 20.203 58.036 0.016 

2019/05/13 07:38:26.000 20.259 58.074 -0.035 

2019/05/13 07:44:26.000 20.333 58.126 -0.087 

2019/05/13 07:50:26.000 20.425 58.193 -0.140 

2019/05/13 07:56:26.000 20.533 58.274 -0.192 

2019/05/13 08:02:26.000 20.659 58.371 -0.244 

2019/05/13 08:08:26.000 20.801 58.482 -0.296 

2019/05/13 08:14:26.000 20.961 58.608 -0.349 

2019/05/13 08:20:26.000 21.138 58.750 -0.402 

2019/05/13 08:26:26.000 21.334 58.907 -0.455 

2019/05/13 08:32:26.000 21.548 59.080 -0.508 

2019/05/13 08:38:26.000 21.781 59.268 -0.562 

2019/05/13 08:44:26.000 22.033 59.473 -0.616 

2019/05/13 08:50:26.000 22.307 59.694 -0.670 

2019/05/13 08:56:26.000 22.602 59.932 -0.725 

2019/05/13 09:02:26.000 22.921 60.187 -0.780 

2019/05/13 09:08:26.000 23.264 60.459 -0.836 

2019/05/13 09:14:26.000 23.634 60.749 -0.892 

2019/05/13 09:20:26.000 24.032 61.056 -0.949 

2019/05/13 09:26:26.000 24.462 61.382 -1.006 

2019/05/13 09:32:26.000 24.926 61.727 -1.064 

2019/05/13 09:38:26.000 25.427 62.091 -1.123 

2019/05/13 09:44:26.000 25.970 62.474 -1.183 

2019/05/13 09:50:26.000 26.560 62.877 -1.243 

2019/05/13 09:56:26.000 27.201 63.301 -1.305 

2019/05/13 10:02:26.000 27.900 63.745 -1.367 

2019/05/13 10:08:26.000 28.666 64.210 -1.430 

2019/05/13 10:14:26.000 29.507 64.697 -1.494 

2019/05/13 10:20:26.000 30.434 65.205 -1.560 

2019/05/13 10:26:26.000 31.461 65.735 -1.627 

2019/05/13 10:32:26.000 32.602 66.285 -1.694 

2019/05/13 10:38:26.000 33.877 66.857 -1.764 

2019/05/13 10:44:26.000 35.309 67.449 -1.834 

2019/05/13 10:50:26.000 36.925 68.058 -1.907 

2019/05/13 10:56:26.000 38.759 68.683 -1.980 

2019/05/13 11:02:26.000 40.852 69.320 -2.055 

2019/05/13 11:08:26.000 43.254 69.962 -2.132 

2019/05/13 11:14:26.000 46.025 70.601 -2.210 

2019/05/13 11:20:26.000 49.233 71.225 -2.290 

2019/05/13 11:26:26.000 52.962 71.815 -2.372 

2019/05/13 11:32:26.000 57.296 72.346 -2.455 

2019/05/13 11:38:26.000 62.321 72.783 -2.538 

2019/05/13 11:44:26.000 68.100 73.078 -2.623 

2019/05/13 11:50:26.000 74.648 73.169 -2.707 
2019/05/13 11:56:26.000 81.895 72.977 -2.789 



85  

2019/05/13 12:02:26.000 89.657 72.411 -2.869 

2019/05/13 12:08:26.000 97.644 71.368 -2.943 

2019/05/13 12:14:26.000 105.503 69.741 -3.008 

2019/05/13 12:20:26.000 112.906 67.418 -3.056 

2019/05/13 12:26:26.000 119.615 64.270 -3.079 

2019/05/13 12:32:26.000 125.506 60.140 -3.061 

2019/05/13 12:38:26.000 130.554 54.821 -2.979 

2019/05/13 12:44:26.000 134.797 48.038 -2.794 

2019/05/13 12:50:26.000 138.303 39.454 -2.455 

2019/05/13 12:56:26.000 141.144 28.721 -1.890 
2019/05/13 13:02:26.000 143.382 15.644 -1.039 
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APPENDIX B. SIMULATION RESULTS 

 

 
ISS RANGE RATE ONLY 
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ISS ANGLES ONLY 
 



88  

ISS RANGE RATE AND ANGLES 
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NAVSTAR RANGE RATE ONLY 
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NAVSTAR ANGLES ONLY 
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NAVSTAR RANGE RATE AND ANGLES 
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MOLNIYA RANGE RATE ONLY 
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MOLNIYA ANGLES ONLY 
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MOLNIYA RANGE RATE AND ANGLES 
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APPENDIX C. RESULTS FROM PREVIOUS BUILD OF LMF 

 

 

 

ISS using 10 observations of range rate 
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ISS using 10 observations using range rate, Azimuth and elevation 
 



97  

 

ISS using 20 observations with range rate only 
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ISS using 20 observations of range rate, azimuth and elevation 
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ISS using 40 observations using range rate only 
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ISS using 40 observations of range rate, azimuth and elevation 



101  

NAVSTAR-77 using 10 observations of range rate only 
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NAVSTAR-77 using 10 observations of range rate, azimuth and elevation 
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NAVSTAR-77 using 20 observations of range rate only 
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NAVSTAR-77 using 20 observations of range rate, azimuth and elevation 
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NAVSTAR-77 using 40 observations of range rate only 
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NAVSTAR-77 using 40 observations of range rate, azimuth and elevation 
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MOLNIYA 3-50 using 10 observations of range rate 
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MOLNIYA -3-50 using 10 observation of range rate, azimuth and elevation 
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MOLNIYA -3-50 using 20 observation of range rate 
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MOLNIYA -3-50 using 20 observation of range rate, azimuth and elevation 
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MOLNIYA -3-50 using 40 observation of range rate 
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MOLNIYA -3-50 using 40 observation of range rate, azimuth and elevation 
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% Range rate standard deviation = 5; 

% Noise standard deviation [Az = 0.005*pi/180; 

% [1] ISS [2] NAVSTAR [3] MOLNIYA 
% number of observations 
% Time between observations [s] 

% Determines which parameter set 

= 2; 
= 100; 
= 252; 
= 2; 

chooseSat 
n_obs 
step 
choice 
to run 
sig1 
El] 
sig2 

% Satellite options 

APPENDIX D. MATLAB CODE 

 

 
TEST PROGRAM 

Least Squares Orbit Determination 
The following program uses a least squares algorithm to predict an orbit with erroneous 

data. This program simulates measurements using an orbit propagated using data 

recovered from Gpredict software. Specifically, a file containing the date, time, right- 

ascension, and declination is used, along with Gauss's method for retrieving a state vector, 

is used to produce the "measurements." 

Goal: Minimize  
 

1) SATELLITE AND PROPAGATOR OPTIONS: 

The user has the choice for which observed parameters they want to use. The cases are 

as follows: 

Choice 1. Range-rate only 

Choice 2. Range-rate, azimuth, elevation 

Choice 3. Angles only (Azimuth & Elevation) 

 
 
 
 
 
 
 
 
 
 

 

2) MARQUARDT FILTER OPTIONS: 

clc; clear 
format long g 
randn('seed',0) 
tic 
global PC AuxParam Cnm Snm eopdata const ... 
 
constants 
get_eopdata 

% Perturbation value (used for 
% marquardt options 
options.bdx = 25e-5; 
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3) LOAD SATELLITE DATA AND CALCULATE INITIAL ESTIMATE STATE VECTOR 

There are currently three satellites to choose from. Should the user desire studying an 

alternative satellite, enter the name of the satellite as done below. Note that each name 

has 24 characters including spaces. Consult Celestrak for lists of satellites and TLEs. 

From here, it is possible to calculate the position of the satellite using Two-Line Element 

(TLE) data. TLE data from all active satellites is read from Celestrak and stored in the file 

TLE_DATA.txt. This text file is scanned for the relevant satellite, then the TLE of that 

satellite is stored in the file new_tle.txt. The state vector is calculated using sgp4.m. 

In the TLE, epoch is represented in days (with fraction of day) since Jan. 1 of the current 

year. To get time since epoch for an event, first days since Jan. 1 of the event is 

calculated, then epoch is subtracted from that value. The function sgp4.m is used to extract 

the state vector from the TLE at the event time. 

options.incr = 10; % Factor for increasing lambda 
options.decr = 0.4; % Factor for decreasing lambda 
options.maxIter= 29; % Maximum amount of iterations 
options.eps1 = 1e-4; % Gradient convergence Criteria 
options.eps2 = 1e-8; % Parameter convergence criteria 
options.eps3 = 1e-6; % RMS criterion 
options.eps4 = 1e-20; % Acceptence criteria 
if choice == 1 || choice == 3 

options.wts = 1/sig1^2; 
elseif choice == 2 

options.wts = []; 
for i = 1:n_obs 

options.wts = [options.wts;1/sig1^2;1/sig1^2;1/sig2^2]; 
end 

end 

% Starting point for Marq. 
Jacobian) 
options.lambda = 0.0001; 
parameter 

'; 

'; 
% ISS downlink freq ft = 145.8*1e6; 

satellite = 'ISS (ZARYA) 
get_tle(satellite); 
passTime1 = [2019 5 12 5 36 24]; 

elseif chooseSat == 2 
ft = 1575.42*1e6; 
satellite = 'NAVSTAR 77 (USA 289) 
get_tle(satellite); 
passTime1 = [2019 5 12 18 45 46]; 

% Enter Satellite Event Time (UT): 
% passTime = [year month day hour minute second] 
if chooseSat == 1 

http://www.celestrak.com/NORAD/elements/active.txt
http://www.celestrak.com/NORAD/elements/active.txt
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4) SIMULATE GROUND STATION 

Constructing the position of the ground site can be done using Eqn. (5.86) in the Curtis 

book. For the purposes of this experiment, the latitude, longitude, and altitude of San Jose 

State University are used for this construction. 

5) READ IN EARTH GRAVITY FIELD COEFFICIENTS AND MODEL PARAMETERS 
 

sat.minute1 = passTime1(5); 
sat.second1 = passTime1(6); 
 
sat.UT = sat.hour1 + sat.minute1./60 + sat.second1./(60*60); 
sat.MJD0 = Mjday(sat.year1, sat.month1, sat.day1, sat.hour1, sat.minute1, 
sat.second1); 
ndays = days_past_Jan1(sat.year1, sat.month1, sat.day1, sat.hour1, 
sat.minute1, sat.second1); 
[r0, v0] = sgp4(ndays); % [km km/s] 
% Epoch state "truth" 
Y0_ref = [r0*1e3 v0*1e3] ; % [[m] [m/s]] 

= passTime1(1); 
= passTime1(2); 
= passTime1(3); 
= passTime1(4); 

% Pass 1 
end 
sat.year1 
sat.month1 
sat.day1 
sat.hour1 

'; satellite = 'MOLNIYA 3-50 
Molniya_tle(satellite); 
passTime1 = [2019 5 13 3 2 26]; 

else 

% East longitude [deg]: 
degrees = -121; 
minutes = 52; 
seconds = 31.19; 
% convert negative (west) longitude to east longitude: 
if degrees < 0 

degrees = degrees + 360; 
end 
% Express the longitudes as decimal numbers: 
sat.EL = degrees + minutes/60 + seconds/3600; 

[km] 
[rad] Latitude % 

% Altitude = .025; 
= 37.3352*pi/180; 

sat.alt 
sat.phi 

% File for planetary and lunar ephemerides 
load DE430Coeff.mat 
PC = DE430Coeff; 
% File for Earth gravity field 
load GGM03S.txt 
%% read Earth gravity field coefficients 
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6) READ IN EARTH ORIENTATION PARAMETERS: 

In this section, the program reads Earth Orientation Parameters (EOPs) from Celestrak. 

Because Celestrak constantly update the EOPs, downloadilng the code directly through 

the code will facilitate future uses of the program. In the case that the user is not connected 

to the internet, a downloaded set of EOP data can be used. 

Read Earth Orientation Parameters 

Cnm = zeros(181,181); 
Snm = zeros(181,181); 
fid = fopen('GGM03S.txt','r'); 
for n=0:180 

for m=0:n 
temp = fscanf(fid,'%d %d %f %f %f %f',[6 1]); 
Cnm(n+1,m+1) = temp(3); 
Snm(n+1,m+1) = temp(4); 

end 
end 
fclose(fid); 
% model parameters 
AuxParam = struct 
('Mjd_UTC',0,'area_solar',0,'area_drag',0,'mass',0,'Cr',0,... 
 
'Cd',0,'n',0,'m',0,'sun',0,'moon',0,'sRad',0,'drag',0,... 

'planets',0,'SolidEarthTides',0,'OceanTides',0,... 
'Relativity',0,'n_a',0,'m_a',0,'n_G',0,'m_G',0); 

% [kg] = 2000; 
= 1.0; 
= 2.0; 
= 10; 
= 10; 
= 10; 
= 10; 
= 10; 
= 10; 

= 10*2; % [m^2] AuxParam.area_drag 
AuxParam.mass 
AuxParam.Cr 
AuxParam.Cd 
AuxParam.n 
AuxParam.m 
AuxParam.n_a 
AuxParam.m_a 
AuxParam.n_G 
AuxParam.m_G 

AuxParam.Mjd_UTC = sat.MJD0; 
AuxParam.area_solar = 10*2; % [m^2] 

% Used for printing of results ['x','y','z']; Label = 
%% 

eopdata; 
 
fid = fopen('eopdata.txt','r'); 
eopdata = fscanf(fid,'%i %d %d %i %f %f %f %f %f %f %f %f %f',[13 inf]); 
fclose(fid); 

http://celestrak.com/SpaceData/eop20130101.txt
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Evaluate model using Y0 % 

end 
for i = 1:length(t) 

Obs(i,:) = get_obs(Y0_ref,t(i),sat,1); 
end 
% [Obs,rr] = get_obs(Y0_ref,MJD0,sat,step); 

elseif sat.choice == 3 
fprintf(' Date UTC Az(deg) El(deg)\n'); 

Az(deg) El(deg) Range UTC Date fprintf(' 
rate (km/s)\n'); 

% generation of artificial observations from given epoch state 
sat.n_obs = n_obs; 
sat.choice = choice; 
sat.sig1 = sig1; 
sat.sig2 =  sig2; 
for i = 1:n_obs 

t(i) = i*step; 
end 
t = t(:); 
fprintf('Least-squares orbit determination\n\n'); 

fprintf('Measurements \n\n'); 
if sat.choice == 1 

fprintf(' Date UTC Range rate (km/s)\n'); 
elseif sat.choice == 2 

 

8) BEGIN LEAST SQUARES ALGORITHM 

Beginning the least squares algorithm: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9) SIMULATE PARAMETERS FROM "PREDICTED" ORBIT 

Range rate is calculated using 

 
 
 

where 

 
 is the range vector in the ECI frame 

AuxParam.SolidEarthTides = 1; 
AuxParam.OceanTides = 0; 
AuxParam.Relativity = 0; 

= 1; 
= 1; 
= 0; 
= 0; 
= 0; 

AuxParam.sun 
AuxParam.moon 
AuxParam.sRad 
AuxParam.drag 
AuxParam.planets 
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 is the time derivative of 

 ρ is the magnitude of . 




Right-ascension α and declination δ are found using (Curtis, 2014) 

 

if  

. 

Azimuth A and Elevation a are found using Curtis... 

Now the discovered quantities are recorded in the observation Obs matrix 

Plotting: 

This code can output 3 plots. The data for the first plot, which plots the predicted and 

estimated orbits together, should be extracted from the orbit propagator found in the 

present code. This method is meant to show how the estimated orbit evolves over the 

course of the least-squares interation. This first plot shows only preliminary orbit. With 

added orbital perturbations, the second and third plot show the orbit in both the Earth- 

Centered, Earth-Fixed (ECEF) reference frame and the Earth-Centered Inertial (ECI) 

frame. 
 

Transformation of simulated range-rate to Doppler shift 

To generate the desired "waterfall" plots for Doppler shift, the simulated range-rate 

measurements need to be transformed into frequency shift measurements. This can be 

done through modification of the range-rate formula 

where c is the speed of light, is the percieved frequency at the ground site reciever, and 

is the nominal transmitted frequency. First the Doppler shift equation is solved for 
 

% Step = 60; 
% N_Step = 420; 
% 
% [Eph, Eph_ecef] = Workspace_OrbitGen(Step,N_Step, Y0_ref, sat.MJD0); 
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, 

which is plugged into the equation: 
 

 

 

. 

 
This equation can now be solved for  

Orbit determination: 

 

The Collector function is used to extract the Jacobian J, vector of residuals f, and the sum 

of squares of the residuals SSx. The variable SSx represents S(x) the sum of squares 

using the previous initial state, while SSxq represents the sum of squares of residuals for 

the state with the added correction S(x+q). Inputs to Collector are the inital state vector 

and the position vector of the ground site. The Collector subfunction can be found towards 

the end of this code. 

Marquardt's method for least squares: 
 

(1) 

where 

Range-rate(km/s)\n'); 
Dec(deg) RA(deg) UTC Date 

% Label for residual 
 
fprintf(' 

% Constants used in 

rUp =Y0(1:3) + 6e3; 
rLow = Y0(1:3)-6e3; 
vUp = Y0(4:6)+2; 
vLow = Y0(4:6)-2; 
upb = [r0+.01 v0+0.00001]; 
lobs = [r0-.01 v0-0.00001]; 
options.bnds = [lobs*1e3 upb*1e3]; 
c = [sat]; 
marquardt 

fprintf('\nResiduals: \n\n'); 
table 

Y0_apr = Y0_ref' + [-5e3,-3e3,4e3,-1.6,1,-2.5]'; % Orbit from noisy data 
Y0 = Y0_apr; % A priori state vector 
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 λ : The Marquardt parameter to determine magnitude and direction of step 

 f : Vector of residuals 

 : Change to state. 

Because we desire to fit our measurements to the estimated orbit, Eq. 1 is solved for  

= . 

At each iteration, the sum of squares for the previous step S(x) and the current step S(x+q) 

are compared. If 

the Marquardt parameter λ is increased by a factor of 10 and the previous corrections are 

reversed. If 

 

λ is decreased by a factor of 0.4 for the next iteration (Nash, 1990). 

  Y0 = marquardt('get_obs',Y0,Obs,step,options,c)  

Printout of Summary: 

This section will print out the results of the program. The predicted vector was the initial 

orbit constructed from Gpredict data. The estimated state was the vector used to simulate 

data. The correction column shows corrections made to the estimated state vector. The 

last column of this data gives the "best estimate" of the orbiting body's initial state vector. 

Finally, the Root Mean Square (RMS) error is shown. 

fprintf('%s',Label(i),'[km]'); 
fprintf('%11.1f %11.1f %14.1f %11.1f',Y0_ref(i)/1e3, Y0_apr(i)/1e3 

... 
,(Y0(i)-Y0_apr(i))/1e3, Y0(i)/1e3); 

fprintf('\n'); 
end 
for i=4:6 

fprintf('v%s',Label(i-3),'[km/s]'); 
fprintf('%11.4f %11.4f %14.4f %11.4f',Y0_ref(i)/1e3, Y0_apr(i)/1e3, 

... 

\n'); final estimated correction truth fprintf(' 
for i=1:3 

fprintf('\nSummary: \n'); 

, 
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(Y0(i)-Y0_apr(i)),Y0(i)/1e3); 
fprintf('\n'); 

end 

toc 
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ORBIT AND DATA GENERATION PROGRAM 

 
function [Data, rr] = get_obs(Y0,t,sat,print) 

global AuxParam 

We = 72.9217e-6; % angular vel. of Earth in 

ECI..[rad/s] 

deg = pi/180; 

Ob = 1/298.26; % Earth's flattening 

factor 

Re = physconst('EarthRadius')/1000; % Radius of the 

earth...........[km] 

 

% Tolerances for orbit propagation 

options = rdpset('RelTol',1e-13,'AbsTol',1e-16); 

 

% Build components of the site position vector: 

sat.fac1 = Re/sqrt(1 - (2*Ob - Ob*Ob)*sin(sat.phi)^2); 

sat.fac2 = ((Re*(1 - Ob)^2)/sqrt(1 - (2*Ob - 

Ob*Ob)*sin(sat.phi)^2) + sat.alt)*sin(sat.phi); 

 

MJD_UTC = sat.MJD0 + t/86400; % Modified Julian Date 

 

% Time increment and propagation 

AuxParam.Mjd_UTC = MJD_UTC; 

[~,yout] = radau(@Accel,[0 t],Y0,options); % State vector 

Y = yout(end,:)'; 

 

% Get local sidereal time. Pass 1 data used but t 

compensates. 

lst = LST(sat.year1, sat.month1, sat.day1, sat.UT+t/3600, 

sat.EL); 
 

lst = lst*deg; % [rad] 

 

% Coordinate Transformation Matrix 

Q = geocentric2topocentric(sat.phi, lst); 

 

% Ground site position vector [m](rotating)[Eq. (5.56)]: 

Rs(1) = (sat.fac1 + sat.alt)*cos(sat.phi)*cos(lst); 

Rs(2) = (sat.fac1 + sat.alt)*cos(sat.phi)*sin(lst); 

Rs(3) = sat.fac2; 

 

Rs = Rs*1000; 

r = Y(1:3); 
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v = Y(4:6); 

Vs = cross([0 0 We],Rs); % Derivative of Rs 

s = Q*(r-Rs'); 

s_dt = Q*(v - Vs'); 

 

%Observations 

[Az, El] = AzEl(s); % [rad] 

range_rate = dot(s,s_dt)/norm(s); 

 

rr = range_rate; 

% Observation record 

MJD = MJD_UTC; 

if sat.choice == 1 

% Data = range_rate; 

Data = range_rate + sat.sig2; 

elseif sat.choice == 2 

% Data = [Az El range_rate]; 

% [rad] 

Data = [Az+sat.sig1*randn El+sat.sig1*randn 

range_rate+sat.sig2*randn]; 

 

elseif sat.choice == 3 

Data = [Az+sat.sig1*randn El+sat.sig1*randn] ; % 

[rad] 

% Data = [Az El]; % 

[rad] 

end 

 

% for printing of results 

if print == 1 

[year,mon,day,hr,minute,second] = 

invjday(MJD_UTC+2400000.5); 

if sat.choice == 1 

fprintf(' %4d/%2.2d/%2.2d %2.2d:%2.2d:%6.3f 

%10.3f\n', ... 

year,mon,day,hr,minute,second, Data/1000); 

elseif sat.choice == 2 

fprintf(' %4d/%2.2d/%2.2d %2.2d:%2.2d:%6.3f 

%10.3f%10.3f %10.3f\n', ... 

year,mon,day,hr,minute,second, 

Data(1)*180/pi,Data(2)*180/pi,Data(3)/1000); 

elseif sat.choice == 3 

fprintf(' %4d/%2.2d/%2.2d %2.2d:%2.2d:%6.3f 

%10.3f%10.3f \n', ... 

year,mon,day,hr,minute,second, 
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Data(1)*180/pi,Data(2)*180/pi); 

end 

end 

 

end % for i = 1:n_obs 
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LEVENBERG-MARQUARDT FILTER 

 

function Y0 = marquardt(func,Y0,Obs,step,options,c) 

% func = 'get_obs' 

global iterat 

lx = numel(Y0); % number of states 

[nPnt,nP] = size(Obs); % number of observations or 

observations sets 

nParam = nP; % number of observables per set 

Y0_prev = zeros(lx,1); % previous parameter set 

data_prev = zeros(nPnt*nParam,1); % previous data set 

SSx = 1e-3/eps; % initialize sum of squares  

SSx_prev = 1e-3/eps; % initialize previous sum of squares 

J = zeros(nPnt,lx); % initialize the Jacobian matrix  

Dof = nPnt - lx + 1; % statistical degrees of freedom 

stop = 0; % initialize termination flag 

iterat = 0; % initialize iteration count 

 
 

bdx = options.bdx; % Jacobian  perturbation 

lambda = options.lambda ; % Starting Marquardt parameter 

YLow = options.bnds(1:6)'; 

YUp = options.bnds(7:12)'; 

wts = options.wts; 

 
 

for i = 1:nPnt 

t(i) = i*step; 

end 

 

% options are stored in struct 

 

 

idx = find(bdx ~= 0); % indices of the parameters 

to be fit 

Nfit = length(idx); % number of parameters to 

fit 

 

if length(bdx) == 1 

bdx = bdx*ones(lx,1); % perturbation for Jacobian 

calculation 

end 
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for i = 1:length(t) 

data_init(i,:) = feval(func,Y0,t(i),c,0); % Evaluate model 

using Y0 

end 

 

% data_init = []; 

% for i = 1:length(t) 

% y_init = feval(func,Y0,Obs(i,1),t(i),c); % initialize residual 

vector from estimated state 

% data_init = [data_init;y_init]; 

% end 

 

if (var(wts) == 0) 

weight = abs(wts)*ones(nPnt*nParam,1); 

disp('Uniform weights used in analysis') 

else 

end 

 

weight = abs(wts(:)); 

% Initialize Jacobian 

[A,g,SSx,dataVec,J] = 

get_Ag(func,t,Y0_prev,data_prev,1,J,Y0,Obs,weight,bdx,c); 

 

% Added for Chol Decomp 

% D = diag(A); 

% d = diag(A); 

% UA = triu(A,1); 

% A = UA' + UA + diag(d+1*D); 

% [U,p] = chol(A); 

 

% dq = U\(U'\g); 

 

% End of Added chol stuff (dq comes out same as q - don't use) 

 

 

if ( max(abs(g)) < options.eps1) 

fprintf(' Initial Estimate is Close to Convergence') 

stop = 1; 

end 

 

SSx_prev = SSx; 

 

history = ones(options.maxIter,lx+3); % Initialize 

convergence history 

 

Obs_vec = []; 
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for i = 1:nPnt 

for k = 1:nParam 

Obs_vec = [Obs_vec;Obs(i,k)]; 

end 

end 
 

% Start least squares 

while ( ~stop && iterat <= options.maxIter) 

iterat = iterat + 1; 

fprintf('iteratation = %f\n',iterat) 

 

q = (A + lambda*diag(diag(A))+1) \ g; % Marquardt correction 

to state 

% q = inv(A)*g 

% q=-q 

% check the effect of q 

 

Ytry = Y0 + q(idx); % Update change fitting 

parameters 

Ytry = min(max(YLow,Ytry),YUp); % apply constraints 

 

 

% y_try = []; % data calculation from Ytry 

% for i = 1:nPnt 

% data_try = feval(func,Ytry,Obs(i,1),t(i),c); 

% y_try = [y_try; data_try']; 

% end 

 

for i = 1:length(t) 

data_try(i,:) = feval(func,Ytry,t(i),c,0); % Evaluate model 

using Y0 

%  y_try(3*i-2:3*i) = data_try(i,1:3)'; 

end 

 

y_try = []; 

for i = 1:nPnt 

for j = 1:nP 

y_try = [y_try;data_try(i,j)]; % vectorized data set 

from 

end 

 

end % data_try matrix 

 

% if nP == 1 

% y_try = data_try(:); 

% else 

% y_try=y_try(:); 
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% end 

% y_try = y_try'; 

f_res = Obs_vec - y_try; % residual error using Ytry 

if ~all(isfinite(f_res)) 

stop = 1; 

break 

end 

 

 

SSx_try = f_res' * ( f_res.*weight); % sum of squares error 

criteria 

 

%beta = SSx - SSx_try 

beta = (SSx - SSx_try) / ( q' * (lambda * q + g) ); 

if beta > 0%options.eps4 % Ytry is accepted 

dSSx = SSx - SSx_prev; 

SSx_prev = SSx; 

Y0_prev = Y0; 

data_prev = dataVec; 

Y0 = Ytry(:); 

 

 

[A,g,SSx,dataVec,J] = 

get_Ag(func,t,Y0_prev,data_prev,dSSx,J,Y0,Obs,weight,bdx,c); 

 

% Decrease lambda ==> Gauss-Newton Method 

lambda = max(lambda*options.decr,1e-7); 

 

 

else % Ytry not accepted 

 

SSx = SSx_prev; 

 

if (~rem(iterat,lx)) % rank-1 Jacobian update 

[A,g,dSSx,dataVec,J] = get_Ag(func,t,Y0_prev,data_prev,- 

1,J,Y0,Obs,weight,bdx,c); 

end 

 

% increase lambda ==> gradient descent method 

lambda = min(lambda*options.incr,1.e7); 

 

end 
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if (max(abs(g)) < options.eps1 && iterat > 2 ) 

fprintf('eps1'); 

stop = 1; 

end 

if (max(abs(q)./(abs(Y0)+1e-6)) < options.eps2 && iterat > 2) 

fprintf('eps2'); 

stop = 1; 

end 

if (SSx/Dof < options.eps3 && iterat > 2) 

fprintf('eps3'); 

stop = 1; 

end 

if ( iterat == options.maxIter ) 

stop = 1; 

end 

 

end % main loop 

 

 

function J = Jacobian(func,t,Y0,Obs,data,bdx,c) 

% Function to calculate the Jacobian matrix 

[m,w] = size(Obs); 

n = length(Y0); 

 

% Jacobian 

J = []; % Initialize Jacobian 

for i = 1:m 

 

yDat = []; % initialize/reset vector of 

data from perturbed run 

for jj = 1:w 

yDat = [yDat;data(i,jj)']; % (3x1) vector of data at 

time t 

 

 

dx 

state k 

 

end 

 

for k = 1:n 

dx = bdx(k); % basic step 

 

xd = Y0; % save state 

xd(k) = xd(k)+dx; % perturb 

 

Jdat = feval(func,xd,t(i),c,0)'; % calculate data at t 

from perturbed state vector 

Jj(1:w,k) = (Jdat-yDat)/dx; % collect 

Jacobian elements at time t 
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end 

J = [J;Jj]; % collect 

Jacobian elements for ti to tf 

end 

 

end 

 

 

function J = Broyden_J(Y0_prev,data_prev,J,Y0,data) 

q = Y0 - Y0_prev; 

J = J + (data - data_prev - J*q)*q' / (q'*q); % Broyden rank-1 

update 

 

end 

 

function [ A,g,SSx,dataVec,J] = 

get_Ag(func,t,Y0_prev,data_prev,dSSx,J,Y0,Obs,weight,bdx,c) 

 

 

[m,n] = size(Obs); % get dimensions of observations 

matrix 

lx = length(Y0); % number of elements in state 

vector 

 

yObs = []; 

for i = 1:m 

for j = 1:n 

yObs = [yObs;Obs(i,j)]; % vectorized data set from obs 

matrix 

end 

end 

 

 

for i = 1:length(t) 

data(i,:) = feval(func,Y0,t(i),c,0); % Evaluate model using 

Y0 

dataVec(n*i-n+1:n*i) = data(i,:); 

end 

 

dataVec = dataVec(:); 

 

 

if (~rem(iterat,lx) || dSSx > 0 ) 

J = Jacobian(func,t,Y0,Obs,data,bdx,c); % finite- 
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difference 

else 

J = Broyden_J(Y0_prev,data_prev,J,Y0,dataVec); % rank-1 

update 

end 

 

f_r = yObs - dataVec;  % vector of residuals 

SSx = f_r'* ( f_r.*weight ); % SSx error criteria 

A = J'* ( J .* ( weight * ones(1,lx) ) ); 

g = J' * ( weight .* f_r ); 

 

end %get_Ag 

 

%% 

 

end % marquardt 


