
Levenberg-Marquardt Filter for

Orbit Estimation

a project presented to

The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree

Master of Science in Aerospace Engineering

By

Robert Ziegler

May 2019

approved by

Prof. Jeanine Hunter

Faculty Advisor

ABSTRACT

LEVENBERG-MARQUARDT FILTER FOR ORBIT ESTIMATION

By Robert Ziegler

This paper tests the Levenberg-Marquardt method of least-squares as it is applied to orbit estimation

using noisy Doppler data. Doppler data used in the analysis is simulated by calculating range rate at

multiple points along the path of a satellite at times the satellite would pass over a real ground

station. The paper begins by discussing how real Doppler data would be used for orbit estimation.

Next, a reference frame used for the analysis is defined. Then, the methods used to acquire

simulated data are outlined. Finally, the Levenberg-Marquardt least-squares algorithm is discussed

in detail, and the results of the experiment are analyzed. It is determined that the Levenberg-

Marquardt method of least-squares is an excellent filter for providing a “best estimate” of a state

vector, and thus the orbit, of a satellite using Doppler data.

Acknowledgments

When it came time to begin a project to fulfill the Master of Science in Aerospace Engineering

requirements, my desire was to work on a challenging problem that would push my limits as an

engineer. This desire was fulfilled when Professor Jeanine Hunter became my project advisor. As I

have progressed through this project (hitting every wall that could possibly be found), Professor

Hunter has given me guidance and has shown me an extreme amount of patience, and for this she

has my sincerest gratitude.

v

Table of Contents

List of Symbols .. vii

1. INTRODUCTION.. 1

1.1 DOPPLER ESTIMATION ... 2

1.2 ORBIT DETERMINATION FROM DOPPLER DATA ... 10

1.3 RESEARCH OBJECTIVES ... 13

2. ORBITAL DETERMINATION FROM GROUND SITE OBSERVATIONS 15

2.1 TIME MANAGEMENT ... 15

2.2 DEFINING THE REFERENCE FRAME ... 17

2.3 THE DOPPLER EFFECT ... 20

2.4 ORBITAL PERTURBATIONS ... 22

3. ORBIT SIMULATION AND DATA ACQUISITION ... 24

3.1 A BREIF HISTORY OF ORBITAL DETERMINATION... 24

3.2 DATA ACQUISITION ... 25

3.3 SOLUTION TO THE ORBIT DETERMINATION PROBLEM .. 28

4. MARQUARDT DAMPED LEAST SQUARES FILTER DESIGN 36

4.2 LEVENBERG-MARQUARDT LEAST SQUARES FILTER .. 38

4.3 BUILDING THE SOFTWARE ... 44

4.4 REMARKS ... 49

5. RESULTS AND ANALYSIS ... 50

5.1 TEST CASE RESULTS .. 53

5.2 ANALYSIS .. 59

6. CONCLUSION AND FUTURE WORK .. 62

6.1 FUTURE WORK ... 64

References ... 65

APPENDIX A. SIMULATED DATA ... 69

APPENDIX B. SIMULATION RESULTS ... 86

APPENDIX C. RESULTS FROM PREVIOUS BUILD OF LMF ... 95

APPENDIX D. MATLAB CODE .. 113

vi

TEST PROGRAM .. 113

ORBIT AND DATA GENERATION PROGRAM ... 122

LEVENBERG-MARQUARDT FILTER ... 125

vii

List of Symbols

Symbol Definition Units (SI)

a semimajor axis length ft (m)

c Speed of light ft/s (m/s)

d Day

e Eccentricity

F Force lbs (N)

f Vector of residuals

f() frequency Hz

fobl Oblateness of the earth

Δf Doppler shift Hz

H Altitude ft (m)

i inclination deg or rad
J0 Julian day at 0 hours UT days

JD Julian day days

J Jacobian matrix

K Constant factor of frequency

transposure

m Month

N Doppler cycle count cycles

q Vector of Marquardt solutions ft, ft/s (m,

m/s)
r Satellite position wrt Earth center ft (m)

R Ground site position wrt Earth center ft (m)

S Sum of squares of residuals

t Time s
T0

UT Universal time

v Velocity of satellite wrt Earth center ft/s (m/s)

Vwave Velocity of the wave of a radio signal ft/s (m/s)

Vsource Velocity of the source of a radio

signal

ft/s (m/s)

X, x State Vector ft, ft/s (m,
m/s)

y Year

Greek

Symbols

α Right ascension deg or rad

δ Declination deg or rad

ε Error

θ True anomaly deg or rad

λ Marquardt parameter

viii

λf Wavelength ft (m)

𝜌̇ Topocentric range-rate ft/s (m/s)

σ Sidereal time deg

τ Orbital period s

φ Longitude deg or rad

ω Argument of perigee deg or rad

Ω Right ascension of the ascending node deg or rad

Subscripts

()𝑐 Geocentric

()𝑑 Geodetic

()𝐸 Earth

()𝑒𝑞 Equatorial

()𝑔 Ground

()𝑝𝑜𝑙 Polar

()r Receiver

()𝑠 Satellite

()𝑡 Transmitter

Acronyms

DE Doppler Effect

ECF Earth-Centered, Fixed

GPS Global Positioning System

GNM Gauss-Newton Method

LMA Levenberg-Marquardt Algorithm

LS Least Squares

OASIS Orbit Analysis and Simulation

Software

OD Orbit Determination

PRARE Precise Range and Range-rate

Equipment

RF Radio Frequency

SDM Steepest Descent Method

TCA Time of Closest Approach

TDRS Tracking and Data Relay Satellites

TLE Two-Line Element

VLBI Very Long Baseline Interferometry

1

1. INTRODUCTION

Orbit determination is a tool used by engineers, scientists, and hobbyists to understand the trajectory

of objects travelling through space. Using orbital mechanics and observations of the position and

velocity of the satellite, observers can predict the position of the object over time. While this

prediction was problematic for the first satellite in space, technology now allows precise tracking of

satellites using enhanced physical models and computing power. Presently, anyone with access to

the internet can either look up the ephemeris of their desired satellite or download sophisticated

software that can approximate and display the trajectory of many orbiting satellites; however, a

different approach is proposed in this report.

As more satellites are introduced into earth orbit, novel approaches to orbit determination are

required. While satellites can send ephemeris data and computer software can approximate the

position of the satellite over time, there must be alternative methods which do not rely on such

technology. The subject of this report is the derivation of the orbital elements of a satellite using the

relative velocity between the satellite and a ground station. This relative velocity will be measured

through examination of radio frequencies from a satellite received at a ground station. Using a

Damped Least-Squares (DLS) algorithm, noisy data received from an Earth-orbiting satellite will be

corrected to find a “best estimate” for the true orbit of the satellite. Figure 1 illustrates how noisy

measurement data can lead to an incorrect orbit. As seen in Figure 1, x variables represent state

vectors along the reference orbit, and 𝒙̂ variables represent state vectors along an estimated orbit.

The noisy data will be curve-fit to a reference orbit using the prescribed DLS algorithm.

2

Figure 1.1 Damped Least Squares Estimation [1].

1.1 DOPPLER ESTIMATION

Many approaches have been taken to use Doppler data to predict the orbit of a satellite. Some of the

simpler methods assume a circular orbit, while the more complex variations are flexible with orbital

parameters but require more information on the orbital history of the satellite. In this section, texts

and articles which discuss the Doppler effect DE, and how DE of a received signal pertains to orbit

determination.

As new equipment and software are introduced into space systems, testing these novelties in the

field is critical. The analysis of the Precise Range and Range-rate Equipment (PRARE), a satellite

tracking system, and how this system aids in precise orbit determination, presented by Bordi [2], is

an example of such testing.

Acting as a supplement to laser tracking, the PRARE system provides range and Doppler data of a

satellite by sending two modulated signals, in X-band and S-band, respectively. This data is

collected and compared at PRARE ground stations where observers use the time delay between X-

and S-band signals to determine the ionospheric delay. Included in the signals are time data which is

3

used to acquire ephemeris data and allow tracking of future passes of the satellite. After processing,

the X-band signal is modulated and sent back to the PRARE space segment where range 𝜌̇

measurements are calculated using the two-way signal time [2]:

1

𝜌̇ = 𝑐(𝛥𝑡 + 𝛥𝑡𝑐𝑜𝑟𝑟) − 𝛥𝜌̇𝑡𝑟𝑜𝑝 − 𝛥𝜌̇𝑖𝑜𝑛𝑜 + 𝜀
2

(1.1)

where 𝛥𝑡 is the time measurement between transmission and reception of the signal, 𝛥𝜌̇ terms are

corrections made for atmospheric delays, and ε is the errors made in observation. Due to the relative

velocity between the satellite and ground stations, Doppler data is also collected during the signal

exchange [2].

The PRARE system analyzes the Doppler frequency shift which results from the relative velocity

between a satellite and a ground station. According to Bordi [2], this change in frequency is how

PRARE calculates range-rate of the satellite. This method requires the measurement of two

frequencies. The first measured frequency is of the received signal at the ground station per:

𝜌̇𝑑 𝜌̇𝑑

𝑓𝑟𝑔 = 𝑓𝑡𝑠 −
𝜆

= 𝑓𝑡𝑠 (1 − 𝑐
),

(1.2)

where f is frequency, 𝜌̇ is the range-rate of the satellite with respect to the ground station, λ is the

wavelength of the signal, and the subscripts, 𝑟𝑔 and 𝑡𝑠, represent signal received by the ground

station and the signal transmitted by the PRARE space segment, respectively. The second necessary

frequency is measured on the satellite per:

4

𝜌̇𝑢 𝜌̇𝑑 𝜌̇𝑢
𝑓𝑟𝑠 = 𝑓𝑡𝑔 (1 − 𝑐

) = 𝐾 · 𝑓𝑡𝑠 (1 − 𝑐
) · (1 −

𝑐
),

(1.3)

where K is the constant factor of frequency transposure, and subscripts 𝑟𝑠 and 𝑡𝑔 represent the

signals received by the satellite and transmitted by the ground station, respectively. The Doppler

count, which is a measure of cycles in the signal, is found by integrating the differences between the

signals found in Eqns. (1.1.2) and (1.1.3). Average range-rate is then calculated from the start and

end of each integration interval, as in [2]:

𝛥𝜌̇ 1 𝑁 + 𝑁𝑐𝑜𝑟𝑟 𝑐

= () + 𝜀,
𝛥𝑡 2 𝛥𝑡 𝑓𝑟𝑒𝑓

(1.4)

where Δρ is the difference between ranges in the integration interval, N is the Doppler cycle count,

and 𝑓𝑟𝑒𝑓 is the function

𝑓𝑟𝑒𝑓 = 𝐾 · 𝑓𝑡𝑠 . (1.5)

Throughout the remainder of Bordi’s [2] research, errors induced by various sources are discussed,

and the methods used to correct these errors are explained. The analysis [2] relies on sophisticated

hardware, but in other cases, orbit history of the satellite is used to predict the future orbit of the

object.

Using knowledge of the orbital history of a satellite, the study produced by Amiri and Mehdipour

[3] presents a method to accurately measure the Doppler shift, regardless of the orbit of the satellite.

Using known values for the position of the satellite 𝑃𝑠 and ground transceiver 𝑃𝑔, a relationship

5

between relative velocity 𝑣𝑡 and Doppler shift can be calculated (annotated from [3]):

𝑓0𝑣𝑡
𝛥𝑓 =

𝑐

(1.6)

where

𝑑(𝑃𝑠 − 𝑃𝑔)

𝑣𝑡 =
𝑑𝑡

(1.7)

in spherical coordinates, and 𝑓0 is the carrier frequency. To find 𝑣𝑡, velocities of the satellite and

ground station are studied in ECEF coordinates, and perturbing forces are analyzed.

Finding a value for 𝑣𝑡 requires an orbit generator with corrections for the following perturbing

forces R, S, and W (annotated from [3]):

𝜸𝑝 = 𝑅𝒒𝒓 + 𝑆𝒒Ө + 𝑊𝒒𝒛 (1.8)

𝐾 = −1.5 · 𝜇 · 𝐽 · 𝑅2 ·
1

2 𝐸 𝑟4

(1.9)

𝑅 = 𝐾(1 − 3 sin2(𝜔 + 𝜈) · sin2(𝑖)) (1.10)

𝑆 = 𝐾 · sin(2(𝜔 + 𝜈)· sin2(𝑖)) (1.11)

𝑊 = 𝐾 · sin(𝜔 + 𝜈) · sin(2𝑖) (1.12)

6

Gauss planetary equations can now be used to illustrate how orbit parameters of a satellite are

influenced by these outside forces (annotated from [3]):

𝑑𝑎 2

= (𝑒𝑅 sin(𝜃) + (1 + 𝑒 sin 𝜃) · 𝑆)
𝑑𝑡 𝑛√1 − 𝑒2

(1.13)

𝑑𝑒 √1 − 𝑒2
= (𝑅 sin 𝜃 + (cos 𝐸 + cos 𝜃) · 𝑆)

𝑑𝑡 𝑛𝑎

(1.14)

𝑑𝑖 1 𝑟

= · · cos(𝜃 + 𝜔) · 𝑊
𝑑𝑡 𝑛𝑎√1 − 𝑒2 𝑎

(1.15)

𝑑𝛺 1 𝑟 sin(𝜃 + 𝜔)

= · · · 𝑊
𝑑𝑡 𝑛𝑎√1 − 𝑒2 𝑎 sin 𝑖

(1.16)

𝑑𝜔 √1 − 𝑒2 1 𝑑𝛺
= · (−𝑅 cos 𝜃 + (1 +) · 𝑆 sin 𝜃 − · cos 𝑖)

𝑑𝑡 𝑛𝑎𝑒 1 + 𝑒 cos 𝜃 𝑑𝑡

(1.17)

𝑑𝑀 1 − 𝑒2 −2𝑒 1

= 𝑛 + (𝑅 (+ cos 𝜃) − 𝑆 (1 +) · sin 𝜃)
𝑑𝑡 𝑛𝑎𝑒 1 + 𝑒 cos 𝜃 1 + 𝑒 cos 𝜃

(1.18)

Equation (1.13 – 1.18) decide if there is a known perturbing force vector. Analytical calculations

will determine the orbital parameter rate of change. Using these forces with an orbit generator

allows the derivation of 𝑣𝑡, and ultimately Δf, after a series of transformations to ECEF coordinates.

In the next article, Doppler estimation is used for satellite identification.

In February 2012, seven 1U CubeSats and two larger satellites were launched into orbit as part of a

7

student science endeavor. In orbit, the proximity of the satellites made individual identification

difficult. To combat this issue, respective orbits were calculated by Marcin and Grzegorz [4] using

the Doppler signal of the satellites.

Unlike the previous methods, the measurements taken in by Marcin and Grzegorz [4] rely on

Software Defined Radio (SDR) and a reference signal generator, as well as computer software

which displayed orbital positions of the nine satellites. Over the course of five days, the satellite

group passed over the ground station seven times, which allowed the collection of thirty downlink

frequency measurements. With an assumed satellite frequency, Orbiton software is used to discern

the desired satellite from the group. The next paper derives position over time of satellites using

inclined circular orbits.

In his paper, Tabakovics’s [5] objective is to find 𝜌̇ using trajectory coordinates of the satellite. As

in the previous article, measurements are taken at a ground station receiver. Using longitude and

latitude coordinates in the orbital plane, the trajectory of the satellite in circular inclined orbit can be

stated as (annotated from [5]):

𝑟𝑠 = 𝑅𝐸 + 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 (1.19a)

𝜙 = 0 ; (1.19b)

𝜆 = 𝜔𝑠 · 𝑡 + 𝜙0 (1.19c)

where 𝑅𝐸 is the mean radius of the earth, 𝑅𝐸, 𝜙 and 𝜆 are longitude and latitude, respectively, and

𝜔𝑠 is the angular velocity of the satellite. For azimuth and elevation measurements at ground

stations, the coordinates from Eqns. (1.4.7) are transformed to the geocentric equatorial plane Earth

8

rotating coordinate system [5]:

𝑟𝑠 = 𝑟𝑠 (1.20a)

𝜙𝐸𝑅 = sin−1(sin 𝑖 · sin(𝜔𝑠 · 𝑡 + 𝜙0))

(1.19b)

𝜆𝐸𝑅 = tan−1[cos 𝑖 · tan(𝜔𝑠 · 𝑡 + 𝜙0)] + 𝛺 − 𝜃𝐺 − 𝜔𝑠 · 𝑡 + 𝑘𝜋

(1.20c)

Range-rate of a satellite can be found by differentiating the distance of the satellite [5]:

1

𝑟 = [(𝑋𝑠 − 𝑋𝑔)2 + (𝑌𝑠 + 𝑌𝑔)2 + (𝑍𝑠 − 𝑍𝑔)2]2

= √𝑅2 + 𝑟2 − 2𝑅 𝑟 cos 𝛾
𝐸 𝑆 𝐸 𝑆

(1.21)

where subscripts s and g represent satellite and ground station, respectively, and 𝛾 is the geocentric

angle between the ground station and the satellite. Introducing an expression for maximum elevation

𝛿𝑚 and differentiating the position vector, relative velocity can be obtained [5]:

𝜌̇ =
𝑑𝑟

𝑑𝑡

9

𝑅 𝑟 sin[𝛿 + sin−1(
𝑅𝐸 · cos 𝛿)] sin[(𝜔 − 𝜔 · cos 𝑖)𝑡](𝜔 − 𝜔 · cos 𝑖)

𝐸 𝑆 𝑚 𝑅𝐸 + 𝑟𝑆
𝑚 𝑆 𝐸 𝑆 𝐸

=

√𝑅2 + 𝑅2 − 2𝑅 𝑟 sin[𝛿 + sin−1 (
𝑅𝐸 cos 𝛿)] cos[(𝜔 − 𝜔 · cos 𝑖)𝑡]

𝐸 𝐸 𝐸 𝑆 𝑚 𝑅𝐸 + 𝑟𝑆
𝑚 𝑆 𝐸

(1.20)

Doppler shift can now be found using 𝜌̇ [5]:

𝑓𝑡
𝛥𝑓 = 𝜌̇ ∙ (−)

𝑐

(1.21)

where 𝑓𝑡 is the transmitted frequency of the downlink signal of the satellite, and c is the speed of

light. Using Doppler measurements to improve global positioning system (GPS) performance is the

topic of the next article.

As aircraft maneuver through the air, the Doppler shift induced on received signals can be much

greater than observed values at a ground station. In their investigation, Agostino, Manzino, and

Marucco [6] use a Kalman filter estimator to improve GPS tracking of aircraft using Doppler

measurements. In this process, a precise ephemeris of a satellite is used, along with the inherent

Doppler shift to calculate the velocity of the aircraft. It is determined that using this Kalman filter

estimation reduces errors caused by noisy measurements.

In another experiment, Ialongo [7] uses a cycle counter to read two-way Doppler measurements and

produce range rate of a satellite. This method feeds an input frequency 𝑓𝑖 into a counter, where

5

𝑓𝑖 =
4
𝑓𝑡 − 𝑓𝑟

(1.22)

An expression for range rate 𝜌̇ is derived from the two-way signal as [7]:

10

𝑅𝑅𝑁 − 𝐹(𝜃, 𝜙)

 1

𝜌̇ = 2
1 − [𝑅𝑅𝑁 − 𝐹(𝜃, 𝜙)

 𝑐
·
 1

2] 𝑐

(1.23)

where

𝑐𝑁2

𝑅𝑅𝑁 =
2048𝑁2 + 26240𝑁1

(1.24)

𝑁1 and 𝑁2 are cycle counts, and

(𝑅𝑡𝑣𝑡 + 𝜌̇𝑡𝑣𝑡 sin 𝜃 − 𝜌̇𝑡𝑣𝑠 cos 𝜙)
𝐹(𝜃, 𝜙) =

𝑅𝑡𝑣𝑡

(1.25)

Here, 𝜌̇ is the distance travelled by the signal.

In this section, methods of measuring the Doppler effect and range rate of a satellite were discussed.

Now, applications to orbit determination will be examined.

1.2 ORBIT DETERMINATION FROM DOPPLER DATA

Having covered a variety of methods used to measure the Doppler shift inherent in satellite

communication, orbit determination schemes which use this data are presented in this section,

starting with a simple circular orbit-based algorithm.

The experiment presented by Schuch [8] uses observations of the orbital period τ of a satellite to

estimate a circular orbit. Using Doppler measurements, a Time of Closest Approach (TCA) is

determined by finding when the received frequency from a satellite is equal to the transmitted

11

frequency, that is, when there is no Doppler shift present. Noting the TCA, a second pass is

evaluated, and a first estimation of τ can be made. The error incurred from the rotation of the earth is

corrected by repeating this process for two successive descending passes. The time elapsed between

these passes is an integer multiple of τ. This integer can be calculated with the equation (annotated

from [8]):

𝑛𝜏

𝑛 = 𝑖𝑛𝑡 ()
𝜏𝑒𝑠𝑡

(1.26)

where 𝜏𝑒𝑠𝑡 is the first estimation of orbital period. Because the orbit in this example is assumed to be

circular, Keplerian elements, which are detailed in Chapter 2, can be found from [8]:

√
4𝜋2𝑟3

𝜏 = .
𝐺𝑀

(1.27)

The system presented by Kirschner, et. al [9] uses six tracking measurements consisting of a

combination of range and Doppler data. A homotopy continuation method is used to solve a set of

nonlinear equations. This method can be used when little or nothing is known about the orbit. Range

and Doppler data are processed in Tracking and Data Relay Satellites (TDRSs). Using preliminary

orbit determination, this process is precise enough to determine trajectory of future passes. The

homotopy continuation method uses a mapping parameter to step through a solution curve in seven-

dimensional space, which produces a set of orbital parameters [9].

In another study, Izsak [10] extracted Doppler measurements simultaneously from three ground

stations. Using the Doppler data from these three stations, Izsak [10] found radial velocity of the

12

satellite with

𝑓𝑟
𝜌̇ = 𝑐 (1 −)

𝑓𝑡

(1.28)

If the distance between the satellite and each of the ground stations is known at two different times,

the Keplerian orbit can be formed through methods which will be discussed in the next chapter.

Moving to a higher earth orbit, an experiment performed by Estefan [11] uses differenced Doppler

for elliptical orbiters. A method of orbit determination for high-orbit elliptical satellites, Very Long

Baseline Interferometry (VLBI), is under investigation [11] for its ability to improve orbit accuracy.

The problem with this process is its high cost. Termed “quasi-VLBI,” an alternative differenced

(two-way minus three-way) Doppler is proposed. While data measured with differenced Doppler is

not as accurate as seen with VLBI, Doppler and range data can be supplied much faster for

navigation purposes [11].

Differenced Doppler first relies on extracting range measurements from Orbit Analysis and

Simulation Software (OASIS), which was developed at the Jet Propulsion Laboratory (JPL). Taking

the time derivative of this range, range rate can be measured. Using downlink signals measured at

three ground stations over the same period, a differencing of the signals is collected, as in the

equation [11]:

𝛥𝜌̇ (𝛥𝜌̇) = [𝜌̇1 𝑢(𝜌̇1𝑢) + 𝜌̇ 1𝑑(𝜌̇1𝑑)] − [𝜌̇1 𝑢(𝜌̇1𝑢) + 𝜌̇ 2𝑑(𝜌̇2𝑑)]

= 𝜌̇1 𝑢(𝜌̇1𝑢) − 𝜌̇ 2𝑑(𝜌̇2𝑑) (1.31)

where the subscripts u and d represent direction of the signal (uplink/downlink) and the numerical

13

subscripts represent different ground stations.

Guier and Weiffenbach [12] use the entirety of a Doppler curve to obtain orbital elements in their

article. While many Doppler-based orbit determination schemes include an intermediary process,

steps can be taken to maximize Doppler data by directly calculating the six orbital elements from the

frequency shift curve. Additional elements, totaling eight, are extracted to account for errors, such as

refraction from the ionosphere. Although computational cost is higher using this single-pass method,

its results have shown that such calculations are possible. The final article reviewed in the present

chapter concerns the use of the Doppler effect in GPS measurements.

The derivation of the GPS relativistic Doppler effects is given by Zhang, et. al [13]. In the GPS

observation system, additional changes in frequency are present. These shifts are caused by gravity

potential from the geoid shape of the earth, the gravity field of the earth, and the orbital eccentricity

of the satellite. To correct the relativistic effects, a special relativity term is added to the equation for

received frequency, which will not be included in this paper as these corrections are not desired for

the present analysis.

1.3 RESEARCH OBJECTIVES

Sophisticated software has enabled aerospace companies to track satellites with accurate measure.

For civilian satellite enthusiasts, there is also satellite tracking software, although these programs

take a loss on accuracy. To mitigate this loss, observations of frequency shift from the transmitted

radio signal of a satellite can be used to determine the orbital elements of the orbit.

The primary objective of this report is to define an algorithm which uses range rate of a satellite

with respect to a ground station to determine the orbital elements of the satellite. To do this,

measurements of the signal received from the satellite will be taken as the satellite travels overhead.

The collection of these frequency data points will form a Doppler curve which will be used to

14

calculate the range rate. A least-squares algorithm will then be introduced to an orbit generator for

final orbit determination.

In the next chapter, data will be extracted from the described orbit propagator. The data pulled will

have contain the mentioned noise needing correction. The LMA will be used to eliminate the noisy

data, and an orbit will be reproduced using the range-rate between the simulated orbiting object and

a simulated ground station.

15

2. ORBITAL DETERMINATION FROM GROUND SITE OBSERVATIONS

To establish the trajectory of an object through space, six independent state parameters are

necessary. For example, the orbit of a satellite about the earth can be determined by the cartesian

state vector, which gives x, y, and z components for the radial and velocity vectors. For this

experiment, observable data will be calculated from the orbit propagated from a state vector. One of

these observables, range rate, will be calculated using the Doppler signal from the satellites under

investigation. For comparison, additional observables will be included in alternative test cases for

this orbit determination problem.

The present chapter discusses theory relevant to orbital determination using ground site

observations. The first part of this chapter discusses the Julian Date system and sidereal time. These

methods of timekeeping simplify later calculations. Next, the Earth-Centered Inertial reference

frame is converted to a frame local to the surface of Earth. Then, the theory of orbital determination

using the described independent quantities is discussed. Finally, because the trajectory of an object

travelling through space can be altered by outside forces, orbital perturbations are briefly discussed.

2.1 TIME MANAGEMENT

As with most problems involving kinetics, time is a necessary component when determining the

orbit of a satellite with observational data. Unlike the ubiquitous solar time, which tracks the

movement of the Sun through the sky, universal time (UT) monitors the passage of the Sun through

the meridian of Greenwich, London, where terrestrial longitude is defined as zero degrees.

Measuring westward from the Greenwich meridian to the local meridian, local standard time in

calculated by adding one hour per each time zone passed.

16

Like UT, local sidereal time is measured with respect to the meridian at Greenwich, London.

Greenwich sidereal time is the time, in degrees, elapsed since the Greenwich meridian travelled

through the vernal equinox multiplied by a factor of fifteen. Local sidereal time is calculated by

adding longitude ϕ of the ground site to Greenwich sidereal time 𝜎𝐺, as in the equation [14]

𝜎 = 𝜎𝐺 + 𝜙 (2.29)

This Julian Date system is used to calculate Greenwich sidereal time.

2.1.2 Julian Date System

Just one year after the Gregorian calendar was introduced to the world [15], French-Italian

astronomer and historian Joseph Scaliger proposed using the Julian period, later to be named the

Julian Date system, facilitate time calculations [16]. Scaliger proposed that rather than having both

BC and AD eras, there should be a temporal point of origin from which all time can be measured

without the need for positive and negative dates. Because the earliest historical records of the time

dated to the year 4713 BCE, Scaliger declared noon UT on January 1 of this year to be the

beginning of the Julian Date system.

To calculate the Julian day JD, it is necessary to find the Julian day number 𝐽0 at 0 hours UT [14]:

7[𝑦 + 𝐼𝑁𝑇(𝑚 + 9)] 275𝑚
𝐽0 = 367𝑦 − 𝐼𝑁𝑇 {

4
} + 𝐼𝑁𝑇 (

9
) + 𝑑 + 1,721,013.5

(2.30)

where y is a year between 1901 and 2099, m is the numerical month, and d is the day of the month.

Then,

17

𝑈𝑇

𝐽𝐷 = 𝐽0 +
24

(2.31)

The next series of calculations are based on the current Julian epoch, which was noon on January 1,

2000. Termed 𝐽2000, this epoch contains 2,451,545 Julian days. Additionally, because there are

365.25 days in a Julian year, it is no surprise that a Julian century has 36,525 days. Time, therefore,

can be found with

𝐽0 − 2,451,545

𝑇0 =
36,525

(2.32)

where 𝑇0 is measured in Julian centuries between the Julian day 𝐽0 and 𝐽2000. The dimensionless

time 𝑇0 can be used to find Greenwich sidereal time 𝜎𝐺0 at 0 hours UT with

𝑈𝑇

𝜎0 = 𝜎𝐺0 + 360.9856724 ·
24

(2.33)

It is important to know that sidereal time must be in the range 0 ≤ 𝜎 ≤ 360. If a value is found

outside of this range, an integer multiple of 360 must be added to or subtracted from the value to

make it meet this criterion.

2.2 DEFINING THE REFERENCE FRAME

For this experiment, measurements will be taken using an orbit simulated in MatLab. The “truth”

orbit will be propagated using a state vector calculated from the Two-Line Element (TLE) of each

satellite. From this simulation, frequency shift shall be estimated based on the introduced orbit, as

18

well as a simulated ground station.

2.2.1 Topocentric Coordinate System

Due to the oblateness of the earth, a line emanating from the center of the earth will only be tangent

to the surface at the equator and the poles; therefore, the topocentric coordinate system defined in

this section will be used instead of the Earth-Centered, Inertial (ECI) frame, with directional vectors

𝒆𝒄𝒙̂, 𝒆𝒄𝒚, and 𝒆𝒄𝒛, to facilitate later calculations. Referring to Figure 2.1, The topocentric coordinate

system is centered at ground site S, which is a distance R from the center of the earth 𝐸𝐶0. At the

site, the East North Up (ENU), or Topocentric Horizon, coordinate system is defined, where 𝒆𝒏𝒖𝒙̂,

𝒆𝒏𝒖𝒚, and 𝒆𝒏𝒖𝒛 are directional vectors pointing North, East, and Zenith, respectfully [17].

As exaggerated in Figure 2.2, the shape of a cross-section of the earth is taken as an ellipse. In

reality, this cross-section is an ellipsoid, but alterations can be made to equations for changes from

the terrestrial elevation [17]. The angle between 𝒆𝒄𝒚 and R, is defined as geocentric latitude 𝜆𝑐.

Because R is not parallel to Zenith, a secondary position vector 𝑹𝜆 perpendicular to the tangent at S

is defined, with its origin 𝐸𝐷0 located on the polar axis. The angle created between 𝑹𝜆 and the 𝒆𝒄𝒚′

is called the geodetic latitude 𝜆𝑑. The terrestrial ellipse can be defined by semimajor 𝑅𝑒𝑞 and

semiminor 𝑅𝑝 axes [17].

19

Figure 2.1 Topocentric Coordinate System ([14] as adapted by [17]).

Figure 2.2 Cross-section of the earth [17].

The oblateness and eccentricity of the earth are defined, respectively, by [14]:

20

𝑅𝑒𝑞 − 𝑅𝑝

𝑓𝑜𝑏𝑙 = = 1 − √1 − 𝑒2
𝑅𝑒𝑞

(2.34)

where the relation between e and 𝑓𝑜𝑏𝑙 is

𝑒 = √2𝑓𝑜𝑏𝑙 − 𝑓2
𝑜𝑏𝑙

(2.35)

The distance from 𝐸𝐶0 to 𝐸𝐷0 is 𝑅𝜆𝑒2 sin2 𝜆, where 𝑅𝜆 is defined as [14]:

𝑅𝑒𝑞 𝑅𝑒𝑞
𝑅𝜆 = =

√1 − 𝑒2 sin2 𝜆 √1 − (2𝑓𝑜𝑏𝑙 − 𝑓2) sin2 𝜆
𝑜𝑏𝑙

(2.36)

The position of S with respect to 𝐸𝐶0 can now be defined as [14]:

𝑅 = (𝑅𝜆 + 𝐻) cos 𝜆 cos 𝜎 𝒆𝒄𝑥 + (𝑅𝜆 + 𝐻) cos 𝜆 sin 𝜎 𝒆𝒄𝑦

+[(1 − 𝑓)2𝑅𝜆 + 𝐻] sin 𝜆 𝒆𝒄𝑧

(2.37)

where H refers to height of the ground station with respect to the reference ellipsoid.

2.3 THE DOPPLER EFFECT

The Doppler effect is a phenomenon that increases or decreases the observed frequency of a wave

due to the relative velocity between the source of the wave and the observer. This frequency shift is

most recognizable in the siren of a passing ambulance, but it can also occur in light and radio signal

reception. Measuring the frequency of stellar light, astronomers can determine if a star is moving

21

with respect to the earth. Likewise, a received radio signal from an orbiting satellite will have a

frequency shift, though steps are typically taken to correct this effect instantaneously. To attain a

better understanding of the Doppler effect, the components of frequency are examined.

The velocity of a wave 𝑉𝑤𝑎𝑣𝑒 from a stationary source can be measured in terms of wavelength λ

and transmitted frequency 𝑓𝑡 with the equation

𝑉𝑤𝑎𝑣𝑒 = 𝜆𝑓𝑡 (2.38)

If the source has a relative velocity with respect to an observer, the observed frequency 𝑓𝑟 is shifted

from 𝑓𝑡, as per the equation:

𝑉𝑠𝑜𝑢𝑟𝑐𝑒

𝑓𝑟 = 𝑓𝑡 (1 +
𝑉

)
𝑤𝑎𝑣𝑒

(2.39)

if the source is moving at velocity 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 towards an observer, or

𝑉𝑠𝑜𝑢𝑟𝑐𝑒

𝑓𝑟 = 𝑓𝑡 (1 −
𝑉

)
𝑤𝑎𝑣𝑒

(2.40)

In the case of signal measured from a passing satellite, 𝑉𝑤𝑎𝑣𝑒 is hereby referred to as the speed of

light c.

With a simulated radio signal and an orbit propagator, equations (2.11) and (2.12) will be used later

in this paper to determine the range-rate of the satellite.

22

2.4 ORBITAL PERTURBATIONS

In a basic two-body problem where the center of mass is dominated by a massive spherical body, an

unaltered orbit could be achieved by the secondary body, though, in reality, none of these

assumptions hold true. Adding complexity to the two-body problem, there are four forces that alter

the orbital elements of a satellite: third-body perturbations, perturbations due to non-spherical

planet, atmospheric drag, and solar radiation pressure [18].

The first orbit influencing force, third-body perturbations, is caused by the sun and moon. These

bodies induce periodic changes to each orbital element of the satellite. Additionally, secular

variations are experienced by the longitude of the ascending node and the mean anomaly due to the

gravitational presence of these bodies.

The second force in this list is due to the ellipsoidal shape of the earth. While the planet is typically

modelled as having a spherical shape, a better estimate shows that more mass is found along the

equator, leaving a flattening effect at the poles. To accurately predict an orbit, zonal coefficients 𝐽𝑛

are used to form a geopotential function.

The oblateness of the earth dominates the geopotential expansion. In this expansion, the 𝐽2 term

represents perturbations caused by this flattening. This force results in secular changes in the

longitude of the ascending node and the argument of perigee [18].

The third orbit perturbing force is atmospheric drag. As a body moves through a fluid, momentum is

lost from the body and imparted to particles in the fluid. This exchange of momentum causes a

decrease in the velocity of the body. In the case of a satellite, a decrease in velocity means orbital

decay. Fluctuations in atmospheric density are caused by varying solar activity. During periods of

high solar activity, altitudes in the range of 500 – 800 km can have an atmospheric density around

two orders of magnitude greater than seen during low solar activity [18].

The final force in this list is caused by solar radiation pressure. In the lower atmosphere,

23

atmospheric drag is the most influencing force on orbital elements, but at altitudes greater than 800

km, solar radiation pressure becomes the greater force [18].

24

3. ORBIT SIMULATION AND DATA ACQUISITION

Paramount to the success of orbital determination is accurate data acquisition. While the data used

for the present paper rely on a simulated orbit, realistic scenarios present errors which must be

accounted for. The goal of this chapter is to provide the method used to calculate an accurate orbit

using noisy data. Reasons for this method choice will be discussed, as well as corrections for the

orbital perturbations outlined in the previous chapter.

The first part of the chapter will give a brief history of statistical orbital determination (OD). Next, a

discussion on how initial orbital data is obtained using MatLab software is given. The corrections

used for orbital perturbations will be examined. To accurately predict the future location of an

orbiting body, all perturbations mentioned in chapter 2 must be considered. After this, the sources of

data error and the procedures used to reduce these errors will be explained.

3.1 A BREIF HISTORY OF ORBITAL DETERMINATION

While astronomers have contemplated motion through space for millennia, it wasn’t until Johannes

Kepler (c.1610), a German mathematician, astronomer, and astrologer discovered that not all orbits

are circular that true statistical OD began [14]. Kepler was a student of a wealthy astronomer, Tycho

Brahe, whose beliefs placed Earth at the center of the universe. When asked by Brahe to determine

the orbit of Mars, Kepler eventually discovered the elliptical shape of the orbit. Later,

mathematicians would proceed with Kepler’s work to give OD a much more defined subject.

The formulation of least-squares (LS) algorithms, discussed further in Section 3.3, was first

imagined by Karl Friedrich Gauss, a German mathematician, in 1795. As with many discoveries,

controversy ensued when French mathematician Adrien-Marie Legendre also discovered the method

of LS and became the first to publish his findings in 1806 [19]. The idea would eventually be

25

attributed to Gauss, who published his own works for OD methods in 1809. While Gauss and

Legendre were trying to figure out who discovered LS, another hallmark achievement was

accomplished.

In 1801, the Ceres comet was rediscovered after astronomers used observations to predict its

location. This was the first time OD was used to locate an orbiting body [20]. Over next two

decades, many mathematicians worked to refine the work done by Gauss and Legendre, though the

Gaussian method is still widely used today.

During the Cold War, the United States first used its ability to observe satellites through radio

frequency when a Naval scientist, Richard Anderle, used the Doppler method to derive range-rate of

the Sputnik I. After Sputnik II was launched, satellite tracking methods were refined further leading

to modern orbit determination, to which Anderle is accredited. Study of the Sputnik satellites

allowed improved estimates for 𝐽2 perturbations and the Earth’s gravitational field [20].

3.2 DATA ACQUISITION

The data analyzed in this paper will be simulated using both the two-line element set (TLE) of a

given satellite and MatLab software. Using an orbit propagator, the TLE set will be used to form an

initial estimate for the orbit of a satellite. For this simulation, slant range-rate between the satellite

and an input ground station will transformed to frequency-rate (Doppler shift) by rearranging the

equation [2]:

𝑓 = 𝑓 (1 −

𝜌̇
)

𝑟 𝑡 𝑐
(3.1)

where:

26

𝑓𝑟 = the frequency received at the ground station

𝑓𝑡 = the frequency transmitted from the satellite

𝜌̇ = the line-of-sight (LOS) range-rate between the ground station and satellite

c = the speed of light.

Finally, 𝑓𝑟(𝑡) will be recorded from multiple passes to derive a new TLE set. Visibility windows

will be calculated on a satellite to satellite basis, though passes with a low maximum elevation will

be avoided. Additionally, because satellite tracking software (Gpredict) will be used for initial TLE

sets and later for comparison, a simulated ground station will be present in both Gpredict and

MatLab, using the longitude and latitude of San Jose State University for coordinates: 37.3352° N,

121.8811° W.

Because a real-life measurement of the Doppler shift would contain noise, the simulated orbit will

have a Gaussian noise added.

3.2.1 Sources of Error

Due to the complexity of satellite communications, error sources are prevalent. According to [20],

there are three main sources of data error: Instrument errors, measurement errors, and mathematical

modeling errors.

Instrument errors can be caused by the operator or hardware. For instance, if the operator should

decide to record the pass of a satellite with a low maximum elevation, meaning a short pass just over

the horizon, atmospheric distortion can induce large errors. Hydrometeors such as clouds and rain

can also cause errors through attenuation of the signal [21]. Errors introduced from hardware can

emanate from poorly maintained sensors or improper wiring [20].

Measurement errors are produced from biases, non-random time-varying errors (drift), and noise

27

[20]. Vallado and McClain [20] state biases are “a constant offset from the true value.” In

astrodynamics, it is common enough to assume this bias is zero. Drift is known as a slow variation

to data over time. The largest contributor to drift is clock instabilities in the satellite, which can be

cause by temperature differentials [20]. Due to the short windows of visibility, drift will be

negligible in the present study. Noise is a statistical indication, or standard deviation of varying data

around the measured average.

Noise errors can stem from several sources. The on-board oscillator can degrade accuracy of the

Doppler shift measurements without short-term stability [22]. According to Bart Root (personal

communication, 2018), a lecturer at the Delft University of Technology in Delft, Netherlands, this

makes tracking smaller satellites (e.g., CubeSats) through one-way Doppler measurements difficult

due to the cheap oscillators used. Additional sources of noise may stem from surface radio

frequency (RF) emissions or other air/space vehicles.

Mathematical modeling errors happen during data processing. This can mean incorrectly entered

data, typos in coding, and general misunderstanding of data field (Bart Root, personal

communication, 2018). The best way to avoid modeling errors is to take care in both data recording

and coding.

3.2.2 Two-Line Elements (TLEs)

As mentioned in chapter 2, six elements are needed to accurately predict an orbit. While the present

study focuses on the use of range-rate information supplied through Doppler data, initial knowledge

of the location of the satellite is necessary, according to Gauss, who states in his book, Theoria

Motus (as translated in [19]), “… this problem [of accurate OD] can only be properly undertaken

when an approximate knowledge of the orbit has been already attained.” Gpredict, a real-time

satellite tracking application, will be used to supply TLE data to MatLab to form an initial estimate

28

of an orbit for a given satellite.

It is worth mentioning, to accurately simulate an orbit, for the purposes of this study, the orbital

perturbations must be included in the simulation model. This requires a code that will factor in

perturbing forces when numerically iterating an orbit.

3.3 SOLUTION TO THE ORBIT DETERMINATION PROBLEM

Algorithms to compute best fit in linear regression models are standard in most modern calculator

software (e.g., Microsoft Excel, MatLab, etc.); however, when attempting to solve nonlinear

systems, user work is required. The objective of the current paper is to find some trajectory

equation, y = f(x), to model the orbit of a satellite. Gauss suggests this problem can be solved by

finding the most probable values. Gauss writes in Theoria Motus (translated by [19]):

… the most probable value of the unknown quantities will be that in which the sum

of the squares of the differences between the actually observed and the computed

values multiplied by numbers that measure the degree of precision is a minimum.”

With this definition, Gauss was able to find a solution to non-linear systems.

The study conducted in the present paper requires an algorithm which will minimize the sum of

squares of the residuals in a data set. This section is dedicated to defining the non-linear LS solution

to statistical OD. The majority of the information found in this section comes from Gavin [23] and

Nash [24].

3.3.1 Finding a Least-Squares Algorithm

Since Gauss and Legendre discovered the method for minimizing the sum of squares of equation

residuals [23],

29

𝑁

𝑆(𝒙̂) = ∑[𝑓𝑖(𝒙̂)]2
𝑖=1

(3.2)

where N is the number of data points and x is a vector of parameters 𝑥𝑗, j = 1,2,3,…,n. The vector of

residuals f is found by assembling the N functions 𝑓𝑖(𝒙̂), where i = 1,2,3,…,N, resulting in [24]

𝑆(𝒙̂) = 𝒇𝑇𝒇. (3.3)

Numerous mathematicians have made alterations to Gauss’s method for both better understanding of

the problem and to decrease computational cost.

Also known as the damped least-squares (DLS) method, the Levenberg-Marquardt algorithm

(LMA) is one such modified algorithm that solves curve fitting problems. The LMA is a

combination of the steepest descent method (also known as gradient descent method) and Gauss-

Newton method.

3.3.1.1 The Steepest Descent Method

Suited for general minimization problems, in the steepest descent method (SDM), parameter values

are updated in the “downhill” direction (i.e., towards the minimum). This method is best suited for

problems with trivial objective functions [23]. Starting with the gradient 2v(x) of S(x), the SDM

steps down along the gradient [24]. Using t, the step length along the step path, it is shown that

𝑆(𝐱 − t𝐯) < 𝑆(𝒙̂) (3.4)

30

where 𝑆(𝒙̂) was defined in Eqn. (3.2).

The SDM uses (𝐱 − t𝐯) in place of x and iterates forward from a new position. This process is

carried on until a t no longer exists for Eqn. (3.4), at which point the operation has converged.

3.3.1.2 The Gauss-Newton Method

In the Gauss-Newton method (GNM), a sum-of-squares objective function is minimized. This

method assumes the desired function is approximately quadratic near the optimal solution [23]. The

GNM allows faster convergence than the gradient descent method when solving moderately sized

problems.

The GNM takes advantage of the fact that the gradient v(x) must be zero at the minimum. That’s to

say, the functions 𝒗𝑗(𝒙̂), j = 1,2,3,…,m, create a nonlinear set of m functions with m unknowns x

such that [24]

𝒗(𝒙̂) = 0. (3.5)

The solution to Eq. (3.5) lies on the local minimum or maximum of the function 𝑆(𝒙̂). Further

analysis of Eqs. (3.2-3.3) suggests gradient components [24]

𝑁

2𝑣𝑗 (𝒙̂) = 2 ∑ 𝑓𝑖 (𝒙̂)𝛿𝑓𝑖 (𝒙̂)/𝛿𝑥𝑗
𝑖=1

(3.6)

which leads to

31

𝑁

𝑣𝑗(𝒙̂) = ∑ 𝑓𝑖(𝒙̂)𝐽𝑖𝑗(𝒙̂)
𝑖=1

(3.7)

restated in matrix form as

𝑱𝑇𝒒 = −𝒗 = −𝑱𝑇𝒇 (3.8)

with Jacobian matrix J defined as

Jij = δfi⁄δy
𝐣

(3.9)

otherwise stated as

perturbed state − actual state
.

amount this state was perturbed by

Simplification of Eq. (3.5) is required; thus, an approximation must be made. To find this

approximation the Taylor expansion of 𝑣𝑗(𝒙̂) about x is examined [24]

∑𝑛 𝒒𝑘 δ𝒗𝑗(𝒙̂)

𝑣 (𝒙̂ + 𝒒) = 𝑣 (𝒙̂) +
𝑘=1

+ (𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝒒2).
𝑗 𝑗 δ𝒙̂𝒌

(3.10)

Assuming 𝑣𝑗(𝒙̂ + 𝒒) is the solution, and thus equal to zero, and the terms 𝑞𝑘𝑞𝑗 in 𝑞2 are negligible,

then

32

∑𝑛 𝑞𝑘 δ𝑣𝑗(𝒙̂)
𝑘=1

= −𝑣 (𝒙̂)
δ𝑥𝑘 𝒋

(3.11)

for each element in j. Thus, incorporating Eqns. (3.7) and (3.9),

 δ𝑣𝑗(𝒙̂)
= ∑𝑁 [𝐽 (𝒙̂)𝐽 (𝒙̂) + 𝑓 (𝒙̂)

𝛿2𝑓𝑖(𝒙̂)
]

δ𝑥𝑘
𝑖=1 𝑖𝑘 𝑖𝑗 𝑖 δ𝑥𝑗δ𝑥𝑘

(3.12)

The GNM iterates forward, using (x + q) in place of x and repeats the process until the value of q

falls below a prescribed tolerance or

𝑆(𝒙̂ + 𝒒) ≥ 𝑆(𝒙̂). (3.13)

3.3.2 Marquardt’s Method

Using both the gradient descent and Gauss-Newton methods, the LMA changes based on the value

of an algorithmic parameter λ, as seen in the equation (adapted from [24]):

(𝑱𝑻𝑱 + λ𝑫𝟐)q = -𝑱𝑇𝒇 (3.14)

where:

𝐉𝐓 = transpose of J

D = a diagonal matrix with positive diagonal elements

f = column vector of residuals

33

q = vector of increments of x.

The vector of residuals 𝐟 is defined as the difference between observed values 𝑦𝒐𝒊 and calculated

values 𝑦𝒄𝒊 as seen in [24]

𝑓𝑖(𝒙̂) = 𝑦𝒐𝒊 (𝑖, 𝒙̂𝒐𝒊) − 𝑦𝒄𝒊
(3.15)

where 𝒙̂𝒐𝒊 is the observed state vector. Residuals are defined in this vector as distances of data points

from the mean curve. Because the matrix 𝐉𝐓𝐉 + λ𝐃𝟐 is always positive definite, Cholesky

decomposition can be used to increase the efficiency of the LMA by breaking the matrix into a

product of two matrices: a lower triangular matrix and its conjugate transpose. For a more in-depth

examination of Cholesky decomposition, see literature by Higham [25].

In the LMA, when λ is very small compared to the norm of 𝑱𝑻𝑱, q tends towards the Gauss-Newton

solution, whereas when λ becomes much larger in comparison to this norm, the steepest descents

solution is calculated. Starting the iteration with λ = 0.1 is suggested by Marquardt. Throughout the

iteration, λ should be decreased by a factor of 10 if the preceding solution q was found to be

𝑆(𝒙̂ − 𝑡𝒗) < 𝑆(𝒙̂) (3.16)

as was seen with the steepest descent method. Should

𝑆(𝒙̂ + 𝒒) ≥ 𝑆(𝒙̂) (3.17)

34

λ should be increased by the same factor followed by repeating Eqn. (3.14).

Marquardt’s modified LS algorithm was tested for its curve fitting capability. The decaying

exponential function

𝑦(𝑖, 𝒙̂) = 𝑐1 + 𝑐2 ∗ 𝑒𝑐3𝑥𝑖 (3.18)

was used to test the algorithm, and the results of this test can be seen in Figure 3.1.

The hitherto information in this paper form the basis for finding a solution to the Doppler shift

problem. Using Marquardt’s method of damped least-squares curve-fitting, the sum-of-squares of

the residuals caused by noise, which will be added as random noise in the simulation, will be

reduced, with the hopes that they fall to zero.

Figure 3.1 Solution of a decaying exponential function. Circles on the graph represent noisy data.

The Solid red line is the LMA solution.

35

In the next chapter, the Levenberg-Marquardt algorithm, as it is applied to the present study, will be

discussed in detail. The method used to provide simulated data will be established and the software

used to fit an estimated orbit will be outlined.

36

4. MARQUARDT DAMPED LEAST SQUARES FILTER DESIGN

The Levenberg-Marquardt Algorithm (LMA), also known as the Marquardt algorithm, is acclaimed

for its proficiency in orbit estimation. The LMA is robust and allows for a higher degree of error in

measured data if your initial estimate of the state vector is reasonable [26]. The Levenberg-

Marquardt Filter (LMF) used in the present study borrows from the LMF outlined by Nash [24]

with modifications presented by Transtrum and Sethna [27]. The algorithm provides a “best

estimate” for state vector x when provided with noisy data and an initial “estimated” state vector. As

it was applied to the present investigation, data was collected from a simulated orbit, then the orbit

was perturbed to provide an initial estimate to the system.

4.1 ACQUIRING DATA

Using NORAD Two-Line Element (TLE) data retrieved from Celestrak, the radial and velocity

components of a given satellite are calculated using the Simplified General Perturbations 4 (SGP4)

propagator, which can be found online in many computing languages. The MatLab version of the

SGP4 propagator used in the present paper, written by Mahooti [28], can be found on the

MathWorks website. Initially, azimuth and elevation data taken from Gpredict satellite tracking

software are used to generate the “truth” state vector.

Gpredict (GP) is a free, downloadable satellite tracking application and was the original source of

data needed to produce the state vector of a satellite in orbit at a given time. In this method, right

ascension and declination angles were transferred from GP to MatLab for processing. Using Gauss’s

method of preliminary orbit determination, a state vector can be produced using three sets of right

ascension and declination angles along with their corresponding time. As the first orbit being tested

for this experiment belonged to the ISS, GP data was enough to generate a state vector; however,

37

problems arose when examining satellites in a larger orbit. Curtis [14] explains the Gauss method in

detail and mentions that the time between the measured angles should be small. While it is possible

to manipulate the output from GP to an extent, the software did not provide data with short enough

time intervals. This became apparent as state vectors generated for larger orbits (e.g., orbits of

NAVSTAR and MOLNIYA satellites) were too flawed to provide adequate testbeds. Learning from

this, it was determined that using TLE sets was the best alternative; however, because a user may

want to produce an estimated orbit from observed angles, future work to the program used in this

paper will provide the means to accomplish this goal.

Once a state vector is produced form TLE data, it is propagated for several steps, allowing the

collection of new state vector 𝒙̂𝑖 for i = 1,...,n, where n is the number of observational sets of data

recorded. Depending on which data is chosen to be simulated, calculations of azimuth 𝐴𝑖, elevation

𝑎𝑖, and/or range rate 𝜌̇𝑖 are stored in a matrix along with their corresponding time 𝑡𝑖. Azimuth is

calculated as

𝐴 = tan−1 (
𝜌̇𝑥

)
𝜌̇𝑦

(4.1)

where 𝜌̇𝑥 and 𝜌̇𝑦 are x and z components of the range vector. If A is negative, 3600 is added to its

value. Elevation is calculated as

𝑎 = tan−1 (
𝜌̇𝑧

)
√𝜌̇2 + 𝜌̇2

𝑥 𝑦

(4.2)

Range rate is calculated using

38

𝝆 ∙ 𝝆

𝜌̇ =
𝜌̇

(4.3)

where

 𝝆 is the range vector 𝝆 = 𝒓 − 𝑹

 𝝆 is the ECI frame time derivative of 𝝆 𝝆 = 𝒗 − (𝝎𝐸 𝑥 𝑹)

 𝜌̇ is the magnitude of 𝝆 𝝆 = √𝜌̇2 + 𝜌̇2 + 𝜌̇2
𝑥 𝑦 𝑧

𝑹 and r are the ground site and satellite positions with respect to the center of the earth and 𝝎𝐸 is

the angular velocity of the earth about its 𝒆𝒄𝒛 axis.

Process noise vector 𝒘𝑖 is then added to the data to resemble realistic measurements. While there

are various options for state vector elements to fit using least-squares methods, two of these element

sets are more commonly used [27].

Common element choices for state vector x, as it applies to orbit determination, are the cartesian and

equinoctial sets of elements [29]. The cartesian state vector contains position and velocity

components {𝑥, 𝑦, 𝑧, 𝑥 , 𝑦 , 𝑧 }, typically studied in the Earth-Centered, Inertial (ECI) frame or, as is

the case in this study, the topocentric horizon frame, as shown in Figure 2.1. The equinoctial

elements are calculated using the classical Keplerian elements. The equinoctial elements are not

used in the present paper. There are many sources for information on the equinoctial elements, such

as Battin [30].

4.2 LEVENBERG-MARQUARDT LEAST SQUARES FILTER

In this section, the Levenberg-Marquardt Filter (LMF) as it applies to this study is detailed. First, a

39

brief discussion on the formation of the LMF is given, elaborating on the description given in

Chapter Three. Then, modifications proposed by [27] are explained.

In the study, “A Method for the Solution of Certain Non-Linear Problems in Least Squares,”

Levenberg [32] proposed damping of parameter increments to improve first-order Taylor series

approximations when a flaw was noticed “standard” methods. In past procedures [32] least squares

algorithms using linear approximations found updated values for estimated parameters, but the

algorithm would fail if the new values were not sufficiently close to the initial estimate. This is

because the algorithm may neglect higher order term, which leads to a larger sum of squares of the

residuals. Thus, Levenberg [32] determined that finding function residuals under damped conditions

was a beneficial alternative. This was done by including a damping parameter 𝜆 to the least-squares

system. The purpose of 𝜆 is to change the eigenvalues of the matrix 𝑱𝑇𝑱 + 𝜆 𝑫𝑇𝑫, where 𝑫𝑇𝑫 is a

scaling matrix, to be equal to 𝜆 or greater [27]. After Levenberg’s [32] development of this novel

approach to least-squares methods, Marquardt [33] added modifications.

Marquardt [33] produced additions to Levenberg’s [32] method for least-squares in his paper, “An

Algorithm for Least-Squares Estimation of Nonlinear Parameters.” Noting that the two methods

used most often for non-linear least-squares estimation, that is, iteratively correcting parameters of

the Gauss-Newton Method (GNM) and various methods of using the Steepest-Descent Method

(SDM), often fail. The Taylor series method fails due to divergence of successive iterations. SDM

failures are caused by slow convergence just a few iterations in [33]. Thus, Marquardt [33] proposed

a “maximum neighborhood” method. This method switches between the GNM and SDM based on

the maximum neighborhood where sufficient representations of the non-linear model can be found

from the truncated Taylor series. As was discussed in Chapter 3, the Marquardt method switches

between the GNM and SDM by comparing values of the sum of squares of residuals of successive

40

steps to those of previous steps. Should the sum of squares resulting from the corrected set of

parameters be greater than the previous sum of squares, the algorithm favors the SDM. Conversely,

if the new sum of squares is less than the previous iteration, the method proceeds with the GNM.

The algorithm, once supplied with a vector of initial estimates p and recorded data, iteratively

repeats the following steps [27]:

1. Calculate new data and Jacobian values based on the updated parameters.

2. Calculate new Marquardt parameter (damping term) 𝜆 and scaling matrix 𝑱𝑇𝑱.

3. Calculate parameter step 𝛿𝒑 using Eqn. (3.14).

4. Test the updated parameter set (𝒑 + 𝛿𝒑) by calculating the residuals of new data to the

previous sum of squares.

5. If the new sum of squares of residuals is less than the previous sum of squares, 𝛿𝒑 is

accepted.

6. Cease iterations if convergence criteria are met or a predetermined maximum iteration count

has been reached.

There are various methods used to determine the damping parameter and scaling matrix.

4.2.1 Damping Parameter and Scaling Matrix

There are two classes of methods used to determine the damping parameter 𝜆: direct and indirect.

Direct methods imply that if 𝜹𝒑 results in a smaller sum of squares of residuals, 𝜆 is decreased by

some factor. Conversely, if 𝛿𝒑 is rejected, 𝜆 is increased by some factor. The factor to increase or

decrease 𝜆 in this method are decided by the user. It is determined that choosing a 𝜆 decreasing

factor lower than the 𝜆 increasing factor leads to better results [27]. Transtrum and Sethna [27]

suggest using a factor of 5 when decreasing 𝜆 and a factor of 1.5 to raise 𝜆 for larger problems. For

41

smaller problems, decreasing and increasing factors of 3 and 2, respectively, work best [27]. Nash

[24] suggests making decreasing and increasing factors 0.4 and 10, respectively.

To use the indirect method for determining 𝜆, a step size Δ is first determined. The damping

parameter that ensures |𝛿𝒑| ≤ Δ is then found. As this method for determining 𝜆 will not be used in

this study, greater detail on the matter will not be provided in the present paper. For further

information on this indirect method for finding 𝜆, see literature such as Mor𝑒 [34]. Transtrum and

Sethna [27] determined that some problems perform better using the direct method for determining

𝜆, while others favor the indirect method.

There are several options when choosing the scaling matrix 𝑫𝑇𝑫. While Levenberg first determined

the scaling matrix be the identity matrix I [27], both Levenberg [32] and Marquardt [33] settled on

using the diagonal entries of 𝑱𝑇𝑱 [24]. More [34] determined that the optimal scaling matrix would

be a diagonal matrix which updates its entries with the largest diagonal entries of 𝑱𝑇𝑱 encountered

through the duration of the run.

4.2.2 Gain Factor

To ensure a faster convergence using the LMF a gain factor β is used to control which corrections

are accepted. This gain factor is formulated as follows (adapted from [35]):

𝐹(𝒙̂) − 𝐹(𝒙̂ + 𝒒)

𝛽 =
𝐿(𝟎) − 𝐿(𝒒)

(4.1)

where F(x) is the data function evaluated with parameter vector x and F(x + q) is the data function

evaluated with parameter correction vector q. The denominator is evaluated as

42

𝐿(𝟎) − 𝐿(𝒒) = −𝒒𝑱𝑻𝒇 −
1
𝒒𝑻𝑱𝑻𝑱 𝒒

2

(4.2)

= −
1
𝒒𝑻[2𝑭′ + 𝑱𝑻𝑱 + 𝜆𝑰 − 𝜆𝑰)𝒒]

2

(4.3)

1

= 𝒒𝑻(𝜆𝒒 − 𝑭′)
2

(4.4)

where

𝑭′ = 𝐉T𝒇 (4.5)

When 𝛽 falls below a predetermined value 𝜖4 the parameter correction is rejected and 𝜆 in

increased. Otherwise, the parameter correction is accepted and 𝜆 is decreased.

4.2.3 Broyden Rank-1 Jacobian

Each time a correction is accepted to the parameter vector, the Jacobian matrix is updated so new

corrections can be determined. This Jacobian matrix is typically evaluated as

Jij = δfi⁄δy
j

(4.6)

or

43

𝑭(𝒙̂ + 𝛿𝒙̂) − 𝑭(𝒙̂)
𝑱 =

𝛿𝒙̂

(4.7)

As calculating J each time can become computationally expensive, Transtrum and Sethna [27]

suggest using an alternative update method set forth by Broyden [36]. Broyden [36] determined that

a quasi-Newton root finding method that updates J with first derivatives on the first iteration, then

alternates between reevaluating J with a rank-1 update. This Broyden rank-1 update is written as

(adapted from [36])

(𝐹(𝒙̂𝑘) − 𝐹(𝒙̂𝑘−1) − 𝑱𝒒)𝒒𝑇

𝑱𝑘 = 𝑱𝑘−1 +
𝒒𝑇𝒒

(4.8)

where subscript k indicates the current step and k-1 represents the previous step.

4.2.4 Convergence and Stopping Criterion

If the software running the least-squares estimator is not told when it is a good place to stop, it may

continue iterating indefinitely. This implies that either the parameters have converged to a solution

and further iterations cease to produce worthwhile results, or the function is not solvable under the

given conditions and further iterations produce worthless results. Convergence and stopping criteria

are added to the least-squares program to ensure further calculations are not carried out once the

criteria are met. It is suggested to use the following convergence criteria (adapted from [35]):

1. ||𝑭′(𝒙̂)|| ≤ 𝜖1

||𝒒||
2.

||𝒙̂+𝜶||
≤ 𝜖2, where 𝛼 is greater than zero

3. 𝑘 ≥ 𝑘𝑚𝑎𝑥

44

The first criterion stops the program should the highest absolute value in the gradient vector be less

than a user specified value 𝜖1. This will be called the gradient convergence criterion. The second

criterion stops the program if the highest absolute value of the correction vector divided by its

counterpart in the absolute value of the parameter vector plus 𝛼, a small number greater than zero, is

less than the user specified 𝜖2. The third criterion stops the program should the iteration count meet

or exceed some predetermined value.

4.3 BUILDING THE SOFTWARE

For this study, MatLab was used to write the orbit determination software. To use the LMF, a

program was first designed to calculate the “truth” state vector from the TLE set of a given satellite.

Next, a program to propagate the state vector for the pass duration of the satellite is used, and

simulated data is collected. Then, a vector of perturbing elements is added to the “truth” orbit to

simulate an initial estimate of the state vector. Finally, the “estimated” state vector and simulated

data are passed to the LMF to find the “best estimate” of the orbit fitting the supplied data. The

setup of the LMF and subroutines are set up similarly to many other programs using least squares

algorithms.

Three main routines are required when testing a least-squares filter: the least-squares filter, a data

acquisition function, and a testing program. The least-squares filter, in this case, the LMF, is built to

handle a variety of data fitting applications. Next, a test program is created to declare a vector of

initial estimated parameters, system constants, and filter options. Additionally, the test program

reads a file consisting of data and times the data was taken. Finally, the data acquisition function

uses the vector of parameters and the vector of times corresponding to the times of real data

measurement to simulate data.

45

4.3.1 Test Program

In the algorithm test program, “Orbit100.m”, users can alter testing options before state vectors are

produced. Satellites that are currently available for testing are NAVSTAR-77, MOLNIYA 3-50, and

the ISS. The test program is broken up into seven sections.

Satellite selection and orbit propagator options can be set in the first section of this program. The

TLE set for the selected satellite downloads automatically when the program is started. While only

the mentioned satellites are available for the user’s convenience, additional satellites can be tested

with a text file containing the TLE of the desired satellite. Also, in the first section, the choice of

which observation set to use can be made.

For case one, only range rate observations are calculated. The focus of this paper is to study the

ability of the LMF to estimate an orbit purely from the Doppler data received from the downlink

signal of a satellite. Thus, the range rate “observations” used in this study are meant to simulate data

derived from Doppler data by solving Eqn. (1.23) for 𝜌̇ :

𝑐

𝜌̇𝑖 = 𝛥𝑓𝑖 ∙ (−
𝑓

)
𝑡

(4.9)

where 𝛥𝑓𝑖 = 𝑓𝑟,𝑖 − 𝑓𝑡 (frequency received at the ground site at time 𝑡𝑖 minus signal frequency

transmitted by the satellite) is the Doppler shift at time 𝑡𝑖 and c is the speed of light. As the

observations of Doppler shift are simulated in this paper, another method of calculating range rate is

desired. This method was discussed in Section 4.1.

For case two, azimuth and elevation calculations can be taken along with the range rate.

Alternatively, testing can be done using only azimuth and elevation in case three. While the focus of

46

this paper is on using Doppler data (range rate) for orbit estimation, these additional cases will serve

well for comparison. Methods used to calculate azimuth and elevation were covered in Section 4.1.

Section two of the main program allows changing of options used in the LMF. The options

included are:

 bdx - Small perturbation value used for Jacobian calculation (𝛿x in Eqn. 4.7)

 lambda - The Marquardt scaling parameter 𝜆

 incr - A value to increase lambda

 decr - A value to decrease lambda

 maxIter - Determines maximum iteration count

 eps1 - Gradient convergence criteria 𝜖1

 eps2 - Parameter convergence criteria 𝜖2

 eps3 - Root mean square convergence criteria 𝜖3

 eps4 - state correction acceptance criteria 𝜖4

In section three of “Orbit100.m”, the start time for the satellite pass is entered. Satellite tracking

software, such as GP, or internet databases can be used to find satellite flyby times. Time is entered

in Universal Time (UT). In section four of “Orbit100.m”, the user can change the position of the

ground site. Currently, the simulated ground site shares the location of San Jose State University.

Constants and coefficients are read into the program from exterior files in sections 5 and 6 of

“Orbit100.m.”

In sections 5 and 6 of “Orbit100.m,” files containing constants and coefficients used in the orbit

generator are loaded. These files contain Earth Orientation Parameters (EOP), the GRACE gravity

model (GGM03S), and NASA JPL Development Ephemerides (DE430). Finally, in section 7 of

Orbit100.m, data is generated, and the “estimated” orbit is produced.

47

4.3.2 Orbit and Data Generator

The orbit propagator used in this study was part of a package put together by Meysam Mahooti. The

unaltered version of “High Precision Orbit Propagator” (HPOP) can be found on the MathWorks

File Exchange. Mahooti’s HPOP was chosen for its ability to model the variety of forces that act on

Earth-orbiting satellites. These forces are:

 Gravity field of the earth

 Gravity of the solar system planets

 Drag effect

 Solar radiation pressure

 Solid Earth tides

 Ocean tides

The ordinary differential equation solver used in HPOP is the Radau IIa, which is derived by Hairer

and Wanner [31]. Radau IIa is derived from implicit Runge-Kutta methods that offer step size

control and continuous output.

The programs “get_obs.m” and “get_data.m” are called to propagate the state vector x to times

determined by step size and the number of observation sets. The “truth” state vector is propagated in

“get_obs.m”, where azimuth, right ascension, and/or range rate data are calculated. White noise is

added to this data to simulate data that may be picked up by ground site hardware. Similarly,

“get_data.m”, used throughout the LMF, propagates the “estimated” orbit and records data at the

times used for observations. As the LMF searches for state vectors with a better fit, “get_data.m” is

used to calculate data in the generated orbits.

48

4.3.3 Least-Squares Filter

The following algorithm borrows from algorithms found in [24, 26, 27, 33, 35].

Step 1) Enter parameters, observations, options, and constants

Enter 𝑌0, vector of initial parameter estimates

Enter nxm matrix of observations Obs where column 1 is time

Enter options, discussed in Section 4.3.1

Let 𝛿𝑥 = 25 ∗ 10−7, perturbation value for the Jacobian

Let 𝜆0 = 1 ∗ 10−4, starting value of the Marquardt parameter

Let incr = 10, factor to increase 𝜆
Let decr = 0.4, factor to increase 𝜆
Let maxIter = 30, maximum iteration value

Let 𝜖1 = 1 ∗ 10−4, gradient convergence criteria

Let 𝜖2 = 1 ∗ 10−10, parameter convergence criteria

Let 𝜖3 = 1 ∗ 10−6, root mean square convergence criteria

Let 𝜖1 = 1 ∗ 10−12, parameter correction acceptance criteria

Let iterat = 1, to count iterations

Let n = length(Obs)

Let lx = length(𝒀0)

Let 𝑶𝒃𝒔𝒗𝒆𝒄 be a vector of the data found in matrix Obs

Let 𝒅𝒂𝒕𝒂𝑣𝑒𝑐 be a vector of data calculated from initial parameter estimates

Step 2) Calculate SSx = 𝑆(𝒀0) = 𝒇𝑇(𝒀0)𝒇(𝒀0), sum of squares of from initial estimate
If SSx cannot compute, stop.

Calculate g and test for gradient convergence

Let SSx[k] = SSx [k+1]

Step 3) Calculate 𝑱𝑇𝑱 and 𝑱𝑇𝒇
Let iterat = iterat + 1

For i = 1 to l

For k = 1 to lx

Let dx = bdx

Let xd = 𝒀0
Let xd[k] = xd[k] +dx

Calculate 𝑱𝑑𝑎𝑡, data from perturbed parameters

Let Jj[1:w-1,k] = (𝑱𝑑𝑎𝑡 − 𝒅𝒂𝒕𝒂𝑣𝑒𝑐)/𝑑𝑥
End loop on k

Collect Jj calculations into matrix J

End loop on i

Calculate A = 𝑱𝑇𝑱
Calculate 𝒈 = 𝑱𝑇𝒇 , gradient

Let 𝑫 = 𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝑨))

Step 4) Solution of Eqn. (3.14)

Calculate 𝒒 = (𝑨 + 𝝀 ∗ 𝑫)−𝟏 𝒈
Step 5) Test parameter correction

Let 𝒀𝑡𝑟𝑦 = 𝒀0 + 𝒒

Calculate data 𝒚𝑡𝑟𝑦 using 𝒀𝑡𝑟𝑦

49

Let f = 𝑶𝒃𝒔𝒗𝒆𝒄 − 𝒚𝑡𝑟𝑦

Calculate 𝑆𝑆𝑥𝑡𝑟𝑦 = 𝒇′𝒇

Calculate 𝛽 = (𝑆𝑆𝑥 − 𝑆𝑆𝑥𝑡𝑟𝑦)/(𝒒𝑇(𝜆𝒒 + 𝒈), acceptance criteria

If 𝛽 > 𝜖4
Let dSSx = 𝑆𝑆𝑥 − 𝑆𝑆𝑥𝑡𝑟𝑦
Let SSx[k] = SSx[k+1]

Let 𝒀0[𝑘] = 𝒀0[𝑘 + 1]
Let 𝒅𝒂𝒕𝒂𝑣𝑒𝑐[𝑘] = 𝒅𝒂𝒕𝒂𝑣𝑒𝑐[𝑘 + 1]
Let 𝒀0 = 𝒀𝑡𝑟𝑦

Let 𝜆 = 𝜆 ∗ 𝑑𝑒𝑐𝑟
Else

SSx[k+1] = SSx[k]

𝜆 = 𝜆 ∗ 𝑖𝑛𝑐𝑟
Step 6) Test for convergence

If max |𝒈|| ≤ 𝜖1 & iterat > 2

Stop

If max||𝒈|| / (||𝒀𝟎|| + 𝟏 ∗ 𝟏𝟎−𝟔) & iterat > 2

Stop

If iterat = maxIter
Stop

Step 7) Return to step 3, and try again to reduce the sum of squares

4.4 REMARKS

The LMF is said to be one of the best methods for fitting a state vector to noisy data. In this chapter,

the LMF used in the present study is explained to give the reader an understanding of the necessary

steps for using this algorithm. Methods used to simulate data are discussed and a detailed

explanation of the software used is given. In the next chapter, the LMF will be tested using the

satellites discussed in Section 4.3.1. By simulating the Doppler shift using a calculated range rate

(with added noise), it is determined that if the LMF can converge to a solution for each of these

satellites, the Marquardt algorithm for least-squares is a premier choice for fitting using Doppler

data.

50

5. RESULTS AND ANALYSIS

In this chapter, the Levenberg-Marquardt Damped Least-Squares algorithm, outlined in previous

chapters, is tested for its ability to provide the “best estimate” for the state vector of an orbit at a

given epoch. To generate the “truth” orbit of a satellite, the Two-Line Element set of the desired

satellite is downloaded into a text file, then it is processed using an SGP4 propagator and the

cartesian “truth” state vector is produced. With the state vector acquired, an ephemeris is generated,

and simulated observations of range-rate, azimuth, and elevation can be calculated. In the various

cases run in this chapter, different combinations of these data are studied. In testing of real data,

range-rate would be calculated using the Doppler shift of the carrier signal from the satellite. For the

simulated case, it is assumed that the Doppler data has already been processed, giving range rate at

each respective point in the orbit. A simulated ground site is used as an observation point. The

simulated ground site shares the latitude and longitude of San Jose State University:

37.3352𝑜 𝑁, 121.8811𝑜 𝑊. Next, the state vector of the “estimated” orbit is generated.

To generate simulated observations, an initial “estimated” state vector is created by perturbing the

initial “truth” state vector. This “estimated” state vector is propagated, and the desired parameters

are calculated using methods described in the previous chapter. To this data, white, zero-mean,

Gaussian noise is added. The standard deviation for the noise added to each parameter can be seen

in Table 4.1. The standard deviation for azimuth and elevation are “realistic” for satellite tracking

radar sensors [29]. By both perturbing the predicted orbit and adding noise to the simulated data the

response of the filter to an erroneous initial state vector can be evaluated.

51

Table 5.1 Gaussian Measurement Noise Standard Deviation

Parameter Type Standard Deviation

Azimuth, Elevation 18 arc-seconds

Range-Rate 5 meters per second

The following outputs are collected from the filter upon execution:

 Summary table

o Predicted state vector

o A priori (estimated) state vector

o Correction vector (quantifies correction made by filter to each state)

o Best estimate for state vector at epoch

To determine the accuracy of the filter for each case, the correction vector is the most vital piece of

information. To quantify the precision of the filter one needs only compare this Correction Vector

(CV), to the Perturbing Vector (PV) that was added to the “truth” initial state vector. For example,

should the filter produce a perfect fit of the data, the CV would be equal to the negative of the PV,

or

𝑪𝑽 = −𝑷𝑽. (5.1)

Realistically, there will still be error in the “estimated” orbit.

The satellites tested in this study are the ISS, NAVSTAR-77, and MOLNIYA 3-50. These satellites

were chosen for the variety seen between their respective orbits. For the ISS, a low altitude (about

416 km), circular orbit with small eccentricity is observed. Due the smaller size of the ISS orbit, the

space station has an orbital period of about 1.5 hours. The NAVSTAR orbit is similar to that of the

ISS, in that it is circular with small eccentricity; however, this orbit is much larger at around 20,189

52

km. The larger orbit gives the NAVSTAR satellite an orbital period of about 12 hours. The largest

variation is introduced in the Molinaya orbit. The MOLNIYA 3-50 boasts a very high eccentricity of

0.72129. Like the NAVSTAR orbit, the MOLNIYA has an orbital period of about 12 hours. Tables

5.1 and 5.2 show the orbital elements of the three satellites used in this study. These state vectors are

presented in both Cartesian and Keplerian elements. The Cartesian elements are meant to give the

reader an idea of what the “truth” vector should look like, and the Keplerian elements are shown to

give an idea of the size and shape of the respective orbits.

For the LMF, each orbit is propagated from the cartesian state vector at an epoch corresponding to

the time of an overhead pass of the satellite. The epoch of the ISS was May 2, 2019 at 12:08:04

UTC. The initial state vector used for the NAVSTAR-77 had the epoch May 5, 2019 at 11:55:32

UTC. The epoch of the Molinaya orbit was May 2, 2019 at 12:08:04 UTC. Although it was

attempted to get these passes close to each other, the significance of the ISS and MOLNIYA epochs

are purely coincidence.

Table 5.1 Cartesian state vectors of test case satellites.

 ISS NAVSTAR-77 MOLNIYA 3-50

x (km) 5700.1 -24840.6 10138.65

y (km) 2899.8 -8865.8 -19796.5

z (km) 2269.0 3155.2 24154.7

𝑥 (km/s) -0.5624 1.1046 1.202

𝑦 (km/s) 5.3769 -1.9818 0.9401

𝑧 (km/s) -5.4370 3.1397 -2.634

53

Table 5.2 Keplerian state vectors of test case satellites.

 ISS NAVSTAR-77 MOLNIYA 3-50

2

h
𝑘𝑚

()
𝑠

52029.77 102898.1 71305.23

e 0.001259 .000378 0.7208

Ω (deg) 223.3 194.8 152.2

i (deg) 51.65 55.0 62.1

𝜔 (deg) 106.0 276.2 271.7

𝜃 (deg) 48.72 92.17 212.0

a (km) 6791.5 26563.0 26549.2

5.1 TEST CASE RESULTS

For this investigation, various test cases were included. First, it was desired to test how accurately

the LMF corrected satellite orbits of varying sizes and shapes. Many sources focus on testing filters

on satellites following a circular orbit, so a highly elliptic orbit will be included in testing to

discover if this factor changes the accuracy of the filter. Second, while the goal of this experiment is

to test the ability of the filter to fit corrupted data from the downlink frequency shift (which is used

to derive range-rate), test cases involving additional parameters are included for comparison.

The satellites tested in this paper were chosen for the size and shape of their respective orbits.

Starting with the orbit with the lowest altitude in this experiment, the International Space Station

(ISS) is tested. Next, increasing the altitude to MEO, the orbit of NAVSTAR-77, part of the Global

Positioning System (GPS) family of satellites, is examined.

Finally, to test the filter on a highly eccentric orbit, the MOLNIYA 3-50 is included. As the focus of

this paper is orbit estimation using the Doppler shift from the downlink of a satellite, satellites

located in GEO were not considered for this experiment as there would be no apparent change in the

downlink frequency of the respective satellite.

54

The “observation” parameters were chosen due to their observability. According to Folcik [29],

typical observations used for satellite orbit estimation are made up of angular optical observations

and radar observations. The angular optical observations consist of right ascension and declination

measurements made against the background of stars. While radar observations also include two

angle measurements, azimuth and elevation, they also include range and range-rate measurements.

The present analysis assumes that for each case, direct determination of range-rate is not feasible.

The number of observations used for each satellite varies based on the size of the orbit.

While the smaller orbit of the ISS requires fewer data points (25 were used in the present analysis)

to allow the LMF to converge, Hunter [17] advises using an increased number of observations for

the larger orbits of NAVSTAR-77 and MOLNIYA 3-50 to better capture their curvature. An

increased step size allows the full pass of the satellite to be captured without creating abundant data

points to calculate. For the both the NAVASTAR and MOLNIYA satellites, 100 observations were

simulated. The output from the LMF is indicative of how well the filter performed. While

optimizing a program could entail limiting the amount of function calls, it is expected that running

the LMF with increased step size and observation counts will take longer to converge than the more

circular ISS case. For the ISS, a step size of 25 seconds was chosen. With the 25 sets of

observations, this step size allowed the filter access to the full pass duration of 10.5 minutes. To

cover the full pass durations, the NAVSTAR and MOLNIYA orbits were given step sizes of 252

seconds and 360 seconds, respectively.

The output of the LMF is a set of four vectors. These vectors are

 Truth - the initial “truth” state vector retrieved from TLE of the satellite

 Estimated - “estimated” initial state vector. In the case of this paper, this state vector was

“estimated” by perturbing the “truth” vector. Each satellite initial state vector is perturbed by

55

a unique value vector. For smaller orbits, i.e., the orbit of the ISS, a closer estimate is

assumed. Conversely, the orbits of the NAVSTAR and MOLNIYA satellites will have a

higher assumed error in the initial state estimate.

 Correction - a vector of overall corrections made by the LMF to the “estimated” state

vector.

 Final - a vector showing the corrected “estimated” state vector.

Table 5.3 shows the vectors used to perturb each of the satellites under investigation.

It is worth noting that when using the SGP4 propagator on the TLE for the ISS, the resultant state

vector is the negative of the true state vector. To remedy this, signs of the state vector were changed

each time the ISS was tested. To understand how well the LMF performs, the run time of each case

will also be recorded.

Table 5.3 State Vector Perturbation Vectors.

 ISS NAVSTAR MOLNIYA

x (km) 0.5 -5.0 6.0

y (km) -2.0 -3.0 -2.0

z (km) 1.0 4.0 5.0

𝑥 (km/s) -1.3∗ 10−3 -1.6∗ 10−3 3.0∗ 10−3
𝑦 (km/s) 1.0∗ 10−3 1.0∗ 10−3 1.0∗ 10−3
𝑧 (km/s) -0.5∗ 10−3 -2.5∗ 10−3 -2.5∗ 10−3

5.1.1 Range rate, Azimuth, and Elevation Cases

While the focus of the present paper is to determine the adequacy of the LMF to fit noisy 𝜌̇ data, it

is important to have cases with various parameters to compare results. In this subsection, the results

from using the most data types – namely, range rate, azimuth, and elevation – are displayed. In all

56

cases, range rate data represents transformed Doppler data. If real data were present, 𝜌̇ would be

calculated from the Doppler shift in the downlink signal of the satellite using Eqn. (1.23). Tables

(5.4-5.6) show the results of using range rate, azimuth, and elevation. The final row of each table

gives the time t for the LMF to converge for the respective case.

Table 5.4 ISS Results from 𝜌̇ , Azimuth, Elevation.

 Truth Predicted Correction Final

x (km) -6197.6 -6197.1 -0.5 -6197.6

y (km) -1366.2 -1368.2 2.0 -1366.2

z (km) 2416.3 2417.3 -1.0 2416.3

𝑥 (km/s) 3.0828 3 .0815 1.33∗ 10−3 3.0828

𝑦 (km/s) -4.5287 -4.5277 -1.0∗ 10−3 -4.5287

𝑧 (km/s) 5.3561 5.3556 0.5∗ 10−3 5.361

t = 446.626 s

Table 5.5 NAVSTAR-77 Results from 𝜌̇ , Azimuth, Elevation.

 Truth Predicted Correction Final

x (km) -14280.1 -14285.0 5.0 -14280.1

y (km) -15437.3 -15440.3 3.0 -14537.3

z (km) 16212.8 16216.8 -4.0 16212.8

𝑥 (km/s) 3.1686 3.167 1.6∗ 10−3 3.1687

𝑦 (km/s) -0.7177 -0.7067 -1.0∗ 10−3 -0.7077

𝑧 (km/s) 2.1153 2.1128 2.5∗ 10−3 2.1153

t = 2639.753 s

Table 5.6 MOLNIYA 3-50 Results from 𝜌̇ , Azimuth, Elevation.

 Truth Predicted Correction Final

x (km) -14280.1 -14274.1 -6.0 -6197.6

y (km) -15437.3 -15439.3 2.0 -15439.4

z (km) 16212.8 16217.8 -5.0 16212.8

𝑥 (km/s) 3.1686 3.1716 -3.01∗ 10−3 3.1686

𝑦 (km/s) -0.7077 -0.7067 -1.01∗ 10−3 -0.7078

𝑧 (km/s) 2.1153 2.1128 2.49∗ 10−3 2.1153

t = 3539.89 s

57

As seen in Tables (5.4-5.6), the LMF performed remarkably well. Each of the estimated state

vectors were correctly fitted to the noisy data. The data collected from the orbit of the propagated

“estimated” state vector, as well as noisy data collected from the “truth” orbit can be found in

Appendix A.

5.1.2 Angles Only Case

For the second set of cases, angles of azimuth and elevation (with added noise) will serve as the

“observed” data. This case is included in the present analysis to determine if including range rate

information has a significant impact on the performance of the LMF. Tables (5.7-5.9) show the

results of using angles only with the LMF.

Table 5.7 ISS Results from Azimuth & Elevation.

 Truth Predicted Correction Final

x (km) -6197.3 -6197.8 -0.5 -6197.3

y (km) -1366.8 -1368.8 2.0 -1366.8

z (km) 2416.8 2417.8 -1.0 2416.8

𝑥 (km/s) 3.0836 3 .0823 1.29∗ 10−3 3.0836

𝑦 (km/s) -4.5285 -4.5275 -0.99∗ 10−3 -4.5285

𝑧 (km/s) 5.3558 5.3553 0.49∗ 10−3 5.3557

t = 90.013

Table 5.8 NAVSTAR-77 Results from Azimuth & Elevation.

 Truth Predicted Correction Final

x (km) 14277.2 -14272.2 5.0 14277.2

y (km) 15437.6 15440.6 3.0 15437.6

z (km) -16214.8 -16210.8 -4.0 -16214.8

𝑥 (km/s) -3.1690 -3.706 1.59∗ 10−3 -3.1690

𝑦 (km/s) 0.7175 0.7085 -0.9901∗ 10−3 0.7075

𝑧 (km/s) -2.1149 -2.1174 2.49∗ 10−3 -2.1149

t = 5835.172 s

58

Table 5.9 MOLNIYA 3-50 Results from Azimuth & Elevation.

 Truth Predicted Correction Final

x (km) -19347.0 -19341.0 -6.0 -19347.0

y (km) 1824.3 1822.3 2.0 1824.3

z (km) 14893.2 14898.2 -5.0 14893.2

𝑥 (km/s) -1.1151 -1.1121 -2.99∗ 10−3 -1.1150

𝑦 (km/s) -1.6175 -1.6165 -0.99∗ 10−3 -1.6175

𝑧 (km/s) 3.6997 3.6972 2.49∗ 10−3 3.6997

t = 2805.202 s

5.1.1 Range Rate Only Case

For the final set of cases, range rate 𝜌̇ data will be the only observations used for the LMF. The

results of this case are seen in Tables (5.10-5.12).

Table 5.4 ISS Results from 𝜌̇ only.

 Truth Predicted Correction Final

x (km) -6197.3 -6196.8 -0.5 -6197.3

y (km) -1366.8 -1368.8 2.0 -1366.8

z (km) 2416.3 2417.3 -1.0 2416.8

𝑥 (km/s) 3.0836 3 .0815 1.29∗ 10−3 3.0828

𝑦 (km/s) -4.5285 -4.5277 -1.01∗ 10−3 -4.5287

𝑧 (km/s) 5.3558 5.3553 0.49∗ 10−3 5.3557

t = 365.792 s

For the NAVSTAR-77, using the original perturbation mentioned Table 5.3 consistently caused the

orbit LMF to diverge. When the perturbation vector was decreased to

59

PV = [-4 -2.5 3 -1.6∗ 10−3 1∗ 10−3 -2∗ 10−3],

the LMF was able to converge.

Table 5.5 NAVSTAR-77 Results from 𝜌̇ only (using updated PV).

 Truth Predicted Correction Final

x (km) 14277.2 -14273.2 4.0 -14277.2

y (km) 15437.6 -154351 2.5 -14437.3

z (km) -16214.8 16216.8 -3.0 16214.8

𝑥 (km/s) -3.1686 3.167 1.61∗ 10−3 3.1690

𝑦 (km/s) 0.7177 -0.7067 -0.99∗ 10−3 -0.7075

𝑧 (km/s) -2.1153 2.1128 2.01∗ 10−3 2.1149

t = 4416.133 s

Table 5.9 MOLNIYA 3-50 results from 𝜌̇ only.

 Truth Predicted Correction Final

x (km) -19341.5 -19341.5 -6.0 -19341.5

y (km) 1826.6 -15439.3 2.0 -1826.6

z (km) 14880.8 16217.8 -5.0 14880.8

𝑥 (km/s) -1.1162 3.1716 -2.99∗ 10−3 -1.1162

𝑦 (km/s) -1.6178 -0.7067 -0.99∗ 10−3 -1.6178

𝑧 (km/s) 3.7013 2.1128 2.51∗ 10−3 3.7013

t = 2514.526 s

5.2 ANALYSIS

The results have shown that the LMF is remarkable at fitting an orbit to noisy data, including cases

where the only observation is range rate. Most test cases converged using the perturbing vectors

outlined in Table 5.3 with the outlier being angles only case for the NAVSTAR satellite.

Using the original PV caused the LMF to apply zero corrections to the estimated orbit for

60

NAVSTAR-77. Through the iterations, it was observed that each new change was rejected, and 𝜆

continued to grow until it hit a max at 10−7. Potential changes were repeatedly rejected even as the

potential corrections dwindled down to zero. It was believed that the initial guess may have been too

far off for this case (as the literature suggests the filter relies on an estimate close to the solution), so

the PV was decreased in an attempt to remedy the failure. Indeed, the decrease in PV allowed the

filter to find the solution. Previous builds of the LMF ran into problems as well.

The results found in this section are the outcome of a fourth generation build of the LMF. Previous

iterations proved successful (see Appendix C for results) for the ISS, which converged, and

NAVSTAR, which gained successful, albeit lacking, corrections, but it failed to properly correct the

MOLNIYA cases. Additionally, even though the ISS and NAVSTAR cases were able to be

corrected, there was still room for improvement to the solution, but additional observations only

served to exacerbate the error in the final estimate. This failure was prominent in the MOLNIYA

case as it was believed that adding data from an additional pass would fix the problem, but the

added pass only increased computational cost with zero benefit to the solution. The latest build

(used for the results in this chapter) allowed convergence of each of the satellite cases by making

several modifications to the program structure.

In previous LMF software designs created in this study, the least-squares algorithm and orbit

generator were grouped into one program. While this design can work, as it did for the ISS and

NAVSTAR cases, it became difficult to track variable usage. For example, one section of the

program split a time of the format HH:MM:SS, where HH, MM, and SS are hours, minutes, and

seconds, respectively. The hours, minutes, and seconds were saved to a time vector with variables

{hr min sec}. When the output from the program was far from what was expected, it took many

hours before the mistake was found. In this case, saving a number under the variable “min” caused

61

equations that were meant to find the minimum (using the min.m function) to output erroneous

solutions. The use of “sec” as a variable also caused errors when calling external functions as

MatLab uses “sec” to find the secant of an angle. Though MatLab typically spots these types of

errors and notifies the user, in this case the only hint of the error was in the output of the program.

This was one of many instances that urged the reformatting of the software. Thus, the LMF and

orbit/data generator were built into separate functions, leaving the original file to serve as a testing

function. Once this procedure was complete, each case was able to converge.

As was expected, the ISS was able to converge much faster than the other two cases. This relatively

quick convergence is the product of fewer necessary observations and smaller step sizes. Using this

ideology, it was surprising to find the MOLNIYA cases converging about forty minutes faster

(averaged) than the NAVSTAR in the range rate only and angles only cases. This may be due to the

eccentricity of the Molinaya orbit. Future work will investigate this matter further.

To understand the full capabilities of the LMF used in the paper, future work should involve the

testing of real satellite data. While adding noise to simulated data gives a feel for what could be seen

at a ground site, real observations would challenge the algorithm and discovering the trajectory of a

real satellite with a least-squares algorithm would be all the more rewarding.

62

6. CONCLUSION AND FUTURE WORK

The goal of this investigation included applying the Levenberg-Marquardt least-squares Filter

(LMF) on noisy Doppler shift data to determine the orbit of a given satellite. The focus was to

determine if noisy Doppler data could be used to produce an accurate – or better put, a “best

estimate” – for the state vector of the satellite at epoch. Previous studies using range rate

information for the orbit determination problem, e.g. work done by Nick Komaroff (personal

conversation, December 22, 1993), relied on self-manufacture hardware to capture the Doppler shift

from the downlink signal of a satellite.

Komaroff (personal conversation, 1993), designed a circuit around a crystal discriminator, which

was integrated into ground station hardware. This hardware allowed an output of the received signal

frequency over time, which was converted to range rate data using methods described in in this

report. While the range rate data in this report is simulated, the present study is still designed to

follow the goal of Komaroff (personal conversation, 1993). While real data was not present in the

present investigation, it is worth noting that current software can give this frequency over time

without the need for the additional hardware.

For this project, the LMF was chosen for its reputation for accurately predicting a state vector from

noisy observations. An orbit propagator was used to generate state vectors over the duration of the

pass time of a satellite, and data was calculated from each state vector. To test the proficiency of the

filter, observations were simulated from LEO, MEO, and Molinaya orbit test cases. For each case,

the filter corrected the initial “estimated” state to the supplied noisy data. Three combinations of

data were used in this process.

To compare the results of the focus case, range rate, additional cases with various data types were

63

included in the analysis. The first additional case had data comprised of range rate, azimuth, and

elevation. Because this data set had the most data type, poor resolution in the range rate only case

could be quantified. The second added case used only azimuth and elevation angles. Should this

case have outperformed the previous case and the range rate only case, an understanding of how the

range rate impacted the results could be acquired.

Throughout the building of the LMF software, many iterations of the filter were attempted and

failed. Initial builds allowed convergence on the orbit of the ISS and at least some correction for

NAVSTAR, but it diverged consistently with the Molinaya orbit. When the addition of data from a

subsequent pass only made state vector estimates worse, the program was overhauled and netted

positive results. In addition to reformatting the software, several additions were made to improve

performance of the filter.

While the small step sizes used for the ISS allowed a quick convergence, the orbits of NAVSTAR

and MOLNIYA require larger steps to cover their arch. This large step size causes increased

computational cost when calling the Orbit Generating Function (OGF). For each iteration, the OGF

is called three times, once to calculate data for the current estimated orbit, once for the Jacobian, and

again to test the estimated state vector with added corrections. The Broyden rank-1 Jacobian,

suggested by Transtrum and Sentha [27] decreases the amount of OGF calls by estimating the

Jacobian over several iterations using previous Jacobian elements. Testing this addition proved that

similar data was provided using the rank-1 approximation, so it was implemented into the software.

The MatLab code for the newest build can be found in Appendix D.

It is determined that the Levenberg-Marquardt filter is quite capable of providing a state estimate for

a satellite using topocentric range rate. If range rate is calculated from the Doppler data of a given

satellite, this filter will give its user enough information to find the trajectory of the satellite.

64

6.1 FUTURE WORK

The successful outcome of this filter begs that it be used with real data. Future work should test the

performance of the filter when given processed Doppler data. Initial testing should include data

from satellites with known trajectories. If the filter proves successful, more difficult targets could be

studied. Should it be desired, several modifications could still be made to the software.

While the filter has seen successful testing with simulated data, the Orbit Propagator has not been

tested for its accuracy. Indeed, the OP simulated orbital perturbations, i.e., J2, atmosphere, solar

pressure, etc., but results have not been compared to higher end software. Additionally, data

extracted from the orbit propagator used in “get_obs.m” did not match data provided by GP. Future

work should conduct these tests to ensure any accrued error found when using real data does not

stem from this OP.

Future work could also include modifications to allow for two-way Doppler processing. An added

function to perform this processing could allow the filter to estimate a state vector for a non-

communicating satellite.

65

References

1. Deng, L., Sun, X., and Han, C.,Analysis and Comparison on UKF and BLS for Orbit

Determination,Proc., AAS/AIAA 2015 Astrodynamics Specialists Conf., American Astronautical

Society (AAS), Vail, 9-13 Aug. 2015.

2. Bordi, J.J,. Analysis of the Precise Range and Range-Rate Equipment (PRARE) and Application

to Precise Orbit Determination, May 1999.

3. Amiri, S., and Mehdipour, M., Accurate Doppler Frequency Shift Estimation for any Satellite

Orbit, RAST 2007 3rd International Conference on Recent Advances in Space Technologies,

Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 14-16 June 2007.

4. Stolarski, M., and Woźniak, G., Estimation of PW-Sat Satellite Orbit Based on Doppler

Effect, Proc. SPIE 8454, Photonics Applications in Astronomy, Communications, Industry, and

High-Energy Physics Experiments 2012, 84540H, 7 November 2012.

doi: 10.1117/12.2000192

5. Tabakovic, Z., Doppler Effect in Non-GSO Satellite Propagation. IEEE/AP 2000 Millennium

Conference on Antennas and Propagation, Davos, Switzerland, 9-14 May 2000.

6. Agostino, M. D., Manzino, A., and Marucco, G., Doppler Measurement Integration for Kinematic

Real-Time GPS Positioning, Applied Geomatics,2(4), Dec. 2010, pp. 155-162.

doi:10.1007/s12518-010-0031-z

7. Ialongo, G., Method of Doppler Data Processing For Orbit Determination, TR-0066(5110-01)-5,

Oct. 1969.

doi:10.21236/ad0704587

8. Shuch, H., Demonstrating Celestial Mechanics through Measured Doppler Shift [online], Apr.

1992, http://www.setileague.org/articles/ham/kepler.pdf.

http://www.setileague.org/articles/ham/kepler.pdf

66

9. Kirschner, S., Samii, M., Broaddus, S., and Doll, C., Preliminary Orbit Determination System for

Tracking and Data Relay Satellite System-Tracked Target Spacecraft using the Homotopy

Continuation Method, In its Flight Mechanics/Estimation Theory Symposium, May 10-11 1988,

pp. 217-237.

10. Izsak, I. G., Orbit Determination from Simultaneous Doppler Shift Measurements, SAO Special

Report #38, Dec. 1959.

11. Estefan, J., Precise Orbit Determination of High-Earth Elliptical Orbiters using Differenced

Doppler and Ranging Measurements, IEEE PLANS 92 Position Location and Navigation

Symposium Record, Vol. 7, No. 5, May 1992, pp. 12-18.

doi:10.1109/plans.1992.185827

12. Guier, W. H., and Weiffenbach, G. C., The Doppler Determination of Orbits, AD-409 103, Jul.

1963.

13. Zhang, J., Zhang, K., Grenfell, R., and Deakin, R., Short Note: On the Relativistic Doppler

Effect for Precise Velocity Determination using GPS. Journal of Geodesy, Vol. 80, No. 2, May

2006, pp. 104-110.

doi:10.1007/s00190-006-0038-8

14. Curtis, H. D., Orbital Mechanics for Engineering Students, 3rd ed., Elsevier Aerospace

Engineering Series, 2014.

15. Coyne, G. V., Hoskin, M. A., and Pedersen, O., Gregorian Reform of the Calendar, Proc.

Vatican Conference to Commemorate its 400th Anniversary, 1582-1982, Specola Vaticana,

Vatican City, 1982, pp. xxv-323.

16. Scharringhausen, B., How Was the Starting Point for the Julian Date System Chosen?

(Advanced), Ask an Astronomer, URL: <http://curious.astro.cornell.edu/about-us/125-

observational-astronomy/timekeeping/calendars/763-how-was-the-starting-point-for-the-julian-

http://curious.astro.cornell.edu/about-us/125-

67

date-system-chosen-advanced>, June 2018.

17. Hunter, J., Orbital Mechanics Course Reader, 2018.

18. Michele, R., Position in an Elliptical Orbit, Aerospace Engineering, URL:

http://www.aerospacengineering.net/?p=537, Oct. 2013.

19. Sorenson, Harold W., Least-Squares Estimation: from Gauss to Kalman. IEEE Spectrum, Vol. 7,

No. 7, 1970, pp. 63-68.

20. Vallado, D. A., and McClain, W. D., Fundamentals of astrodynamics and applications, 3rd ed.,

Microcosm Press, Hawthorne, 2007.

21. Ippolito L.J.. “Radio Noise in Satellite Communications”, Radiowave Propagation in Satellite

Communications, Springer, Jan. 1986, pp. 122-138.

doi: 10.1007/978-94-011-7027-7

22. Kuga, H., and Orlando, V., Assessing Orbit Determination Through One Way Doppler Signals,

ISSFD 2003 International Symposium on Spacecraft Flight Dynamics, Moscow, Jan. 2003.

23. Gavin, H. P., The Levenberg-Marquardt Method for Nonlinear Least Squares Curve- Fitting

Problems, 2017.

24. Nash, J. C., Compact Numerical Methods for Computers: Linear Algebra and Function

Minimization, 3rd ed., CRC PRESS, New York, 1990.

25. Higham, N. J., Cholesky Factorization, Wiley Interdisciplinary Reviews: Computational

Statistics,Vol. 1, No. 2, 2009, pp. 251-254.

doi:10.1002/wics.18

26. Press, W. H., and Vetterling, W. T., Numerical Recipes, 3rd ed., Cambridge Univ. Press.

Cambridge, 1999.

27. Transtrum, M. K., & Sentha, J., Improvements to the Levenberg-Marquardt Algorithm for

Nonlinear Least-Squares Minimization, 2012.

http://www.aerospacengineering.net/?p=537

68

28. Mahooti, M., SGP4, MathWorks, URL:

https://www.mathworks.com/matlabcentral/fileexchange/62013-sgp, March 2017.

29. Folcik, Z. J., Orbit Determination Using Modern Filters/smoothers and Continuous Thrust

Modeling (Unpublished Master's Thesis), Massachusetts Institute of Technology, URL:

<https://dspace.mit.edu/bitstream/handle/1721.1/44936/312478369-MIT.pdf?sequence=2>,

2008.

30. Battin, R., An Introduction to the Mathematics and Methods of Astrodynamics, revised ed.,

AIAA Education Series, 1999.

31. Hairer, E., and Wanner, G., Solving Ordinary Differential Equations II Stiff and Differential-

Algebraic Problems, Springer Berlin, Berlin, 2010.

32. Levenberg, K., A Method for the Solution of Certain Non-Linear Problems in Least Squares,

The Quarterly of Applied Mathematics, 1944.

33. Marquardt, D.W., An Algorithm for Least-Squares Estimation of Nonlinear Parameters,

Journal of the Society for Industrial and Applied Mathematics, 1963.

34. More , J., The Levenberg-Marquardt Algorithm: Implementation and Theory, Lecture Notes in

Mathematics 630, 1977.

35. Nielson, H.B., Damping Parameter in Marquardt’s Method, IMM-REP-1999-05, 1999.

36. Broyden, C. G., A Class of Methods for Solving Nonlinear Simultaneous Equations,

Mathematics of Computation, Vol. 19, No. 92, 1965, p. 577.

doi:10.2307/2003941

http://www.mathworks.com/matlabcentral/fileexchange/62013-sgp
http://www.mathworks.com/matlabcentral/fileexchange/62013-sgp

69

APPENDIX A. SIMULATED DATA

ISS MEASUREMENTS FROM TRUTH ORBIT

Least-squares orbit determination

Measurements from “truth” orbit
Date UTC Az(deg) El(deg) Range rate (km/s)

2019/05/12 05:36:44.000 181.450 5.710 -5.404
2019/05/12 05:37: 4.000 178.368 7.068 -5.158

2019/05/12 05:37:24.000 174.863 8.469 -4.859

2019/05/12 05:37:44.000 170.873 9.898 -4.498

2019/05/12 05:38: 4.000 166.333 11.329 -4.065

2019/05/12 05:38:24.000 161.190 12.722 -3.548

2019/05/12 05:38:44.000 155.412 14.017 -2.941

2019/05/12 05:39: 4.000 149.009 15.139 -2.243

2019/05/12 05:39:24.000 142.058 15.997 -1.464

2019/05/12 05:39:44.000 134.706 16.512 -0.625

2019/05/12 05:40: 4.000 127.172 16.625 0.241

2019/05/12 05:40:24.000 119.706 16.326 1.097

2019/05/12 05:40:44.000 112.549 15.649 1.907

2019/05/12 05:41: 4.000 105.883 14.668 2.643

2019/05/12 05:41:24.000 99.817 13.470 3.291

2019/05/12 05:41:44.000 94.389 12.137 3.848

2019/05/12 05:42: 4.000 89.585 10.737 4.319

2019/05/12 05:42:24.000 85.359 9.320 4.711

2019/05/12 05:42:44.000 81.649 7.918 5.037

2019/05/12 05:43: 4.000 78.393 6.551 5.306

2019/05/12 05:43:24.000 75.528 5.228 5.529

2019/05/12 05:43:44.000 73.001 3.955 5.713

2019/05/12 05:44: 4.000 70.761 2.731 5.865

2019/05/12 05:44:24.000 68.770 1.554 5.991
2019/05/12 05:44:44.000 66.990 0.422 6.096

70

ISS MEASUREMENTS WITH ADDED NOISE

Least-squares orbit determination

Measurements with added noise
Date UTC Az(deg) El(deg) Range rate (km/s)

2019/05/12 05:36:44.000 181.458 5.710 -5.395

2019/05/12 05:37: 4.000 178.369 7.073 -5.165

2019/05/12 05:37:24.000 174.860 8.475 -4.862

2019/05/12 05:37:44.000 170.876 9.896 -4.499

2019/05/12 05:38: 4.000 166.326 11.323 -4.060

2019/05/12 05:38:24.000 161.190 12.718 -3.551

2019/05/12 05:38:44.000 155.416 14.017 -2.938

2019/05/12 05:39: 4.000 149.011 15.142 -2.241

2019/05/12 05:39:24.000 142.051 15.999 -1.458

2019/05/12 05:39:44.000 134.710 16.500 -0.626

2019/05/12 05:40: 4.000 127.170 16.627 0.239

2019/05/12 05:40:24.000 119.706 16.334 1.101

2019/05/12 05:40:44.000 112.551 15.645 1.906

2019/05/12 05:41: 4.000 105.884 14.666 2.641

2019/05/12 05:41:24.000 99.819 13.478 3.279

2019/05/12 05:41:44.000 94.384 12.142 3.851

2019/05/12 05:42: 4.000 89.584 10.739 4.314

2019/05/12 05:42:24.000 85.353 9.322 4.719

2019/05/12 05:42:44.000 81.653 7.916 5.041

2019/05/12 05:43: 4.000 78.392 6.547 5.304

2019/05/12 05:43:24.000 75.525 5.227 5.531

2019/05/12 05:43:44.000 72.995 3.957 5.718

2019/05/12 05:44: 4.000 70.762 2.734 5.865

2019/05/12 05:44:24.000 68.780 1.559 5.982
2019/05/12 05:44:44.000 66.991 0.413 6.101

71

NAVSTAR-77 MEASUREMENTS FROM TRUTH ORBIT

Least-squares orbit determination

Measurements from “truth” orbit (no added noise)
Date UTC Az(deg) El(deg) Range rate (km/s)

2019/05/12 18:16:22.000 169.059 -11.410 0.716

2019/05/12 18:20:34.000 168.895 -9.674 0.715

2019/05/12 18:24:46.000 168.702 -7.963 0.714

2019/05/12 18:28:58.000 168.480 -6.276 0.712

2019/05/12 18:33:10.000 168.227 -4.615 0.708

2019/05/12 18:37:22.000 167.944 -2.979 0.703

2019/05/12 18:41:34.000 167.628 -1.369 0.698

2019/05/12 18:45:46.000 167.280 0.214 0.691

2019/05/12 18:49:58.000 166.898 1.770 0.683

2019/05/12 18:54:10.000 166.482 3.298 0.674

2019/05/12 18:58:22.000 166.030 4.798 0.665

2019/05/12 19:02:34.000 165.543 6.269 0.654

2019/05/12 19:06:46.000 165.018 7.711 0.643

2019/05/12 19:10:58.000 164.455 9.122 0.630

2019/05/12 19:15:10.000 163.853 10.502 0.617

2019/05/12 19:19:22.000 163.212 11.850 0.603

2019/05/12 19:23:34.000 162.530 13.166 0.588

2019/05/12 19:27:46.000 161.806 14.448 0.573

2019/05/12 19:31:58.000 161.041 15.696 0.557

2019/05/12 19:36:10.000 160.232 16.908 0.540

2019/05/12 19:40:22.000 159.380 18.083 0.522

2019/05/12 19:44:34.000 158.484 19.222 0.504

2019/05/12 19:48:46.000 157.544 20.322 0.485

2019/05/12 19:52:58.000 156.559 21.382 0.466

2019/05/12 19:57:10.000 155.528 22.401 0.446

2019/05/12 20:01:22.000 154.453 23.379 0.425

2019/05/12 20:05:34.000 153.332 24.314 0.405

2019/05/12 20:09:46.000 152.166 25.204 0.383

2019/05/12 20:13:58.000 150.956 26.050 0.362

2019/05/12 20:18:10.000 149.702 26.849 0.340

2019/05/12 20:22:22.000 148.405 27.600 0.318

2019/05/12 20:26:34.000 147.065 28.303 0.295

2019/05/12 20:30:46.000 145.685 28.956 0.273

2019/05/12 20:34:58.000 144.265 29.558 0.250

2019/05/12 20:39:10.000 142.808 30.109 0.227

2019/05/12 20:43:22.000 141.315 30.607 0.203

2019/05/12 20:47:34.000 139.789 31.052 0.180

2019/05/12 20:51:46.000 138.231 31.444 0.157

2019/05/12 20:55:58.000 136.645 31.781 0.133

2019/05/12 21:00:10.000 135.033 32.064 0.110
2019/05/12 21:04:22.000 133.399 32.292 0.087

72

2019/05/12 21:08:34.000 131.744 32.465 0.064

2019/05/12 21:12:46.000 130.072 32.584 0.041

2019/05/12 21:16:58.000 128.387 32.648 0.018

2019/05/12 21:21:10.000 126.690 32.658 -0.004

2019/05/12 21:25:22.000 124.986 32.614 -0.027

2019/05/12 21:29:34.000 123.277 32.518 -0.049

2019/05/12 21:33:46.000 121.566 32.369 -0.070

2019/05/12 21:37:58.000 119.856 32.171 -0.091

2019/05/12 21:42:10.000 118.149 31.922 -0.112

2019/05/12 21:46:22.000 116.448 31.625 -0.132

2019/05/12 21:50:34.000 114.753 31.282 -0.152

2019/05/12 21:54:46.000 113.069 30.893 -0.172

2019/05/12 21:58:58.000 111.395 30.460 -0.190

2019/05/12 22:03:10.000 109.733 29.986 -0.208

2019/05/12 22:07:22.000 108.084 29.472 -0.226

2019/05/12 22:11:34.000 106.450 28.920 -0.243

2019/05/12 22:15:46.000 104.830 28.332 -0.259

2019/05/12 22:19:58.000 103.225 27.710 -0.274

2019/05/12 22:24:10.000 101.635 27.056 -0.288

2019/05/12 22:28:22.000 100.059 26.372 -0.302

2019/05/12 22:32:34.000 98.498 25.660 -0.315

2019/05/12 22:36:46.000 96.951 24.923 -0.327

2019/05/12 22:40:58.000 95.418 24.163 -0.338

2019/05/12 22:45:10.000 93.897 23.382 -0.347

2019/05/12 22:49:22.000 92.387 22.582 -0.356

2019/05/12 22:53:34.000 90.888 21.765 -0.364

2019/05/12 22:57:46.000 89.398 20.934 -0.371

2019/05/12 23:01:58.000 87.916 20.091 -0.377

2019/05/12 23:06:10.000 86.441 19.238 -0.382

2019/05/12 23:10:22.000 84.972 18.377 -0.385

2019/05/12 23:14:34.000 83.506 17.512 -0.388

2019/05/12 23:18:46.000 82.044 16.644 -0.389

2019/05/12 23:22:58.000 80.583 15.775 -0.389

2019/05/12 23:27:10.000 79.122 14.908 -0.388

2019/05/12 23:31:22.000 77.660 14.046 -0.386

2019/05/12 23:35:34.000 76.196 13.191 -0.382

2019/05/12 23:39:46.000 74.728 12.345 -0.377

2019/05/12 23:43:58.000 73.255 11.510 -0.371

2019/05/12 23:48:10.000 71.777 10.690 -0.364

2019/05/12 23:52:22.000 70.292 9.887 -0.356

2019/05/12 23:56:34.000 68.799 9.103 -0.346

2019/05/13 00:00:46.000 67.297 8.341 -0.335

2019/05/13 00:04:58.000 65.787 7.603 -0.324

2019/05/13 00:09:10.000 64.267 6.893 -0.310

2019/05/13 00:13:22.000 62.738 6.211 -0.296

2019/05/13 00:17:34.000 61.199 5.562 -0.281
2019/05/13 00:21:46.000 59.650 4.947 -0.265

73

2019/05/13 00:25:58.000 58.091 4.369 -0.247

2019/05/13 00:30:10.000 56.523 3.830 -0.229

2019/05/13 00:34:22.000 54.947 3.333 -0.209

2019/05/13 00:38:34.000 53.363 2.879 -0.189

2019/05/13 00:42:46.000 51.772 2.472 -0.168

2019/05/13 00:46:58.000 50.176 2.112 -0.146

2019/05/13 00:51:10.000 48.575 1.801 -0.124

2019/05/13 00:55:22.000 46.972 1.542 -0.101

2019/05/13 00:59:34.000 45.368 1.336 -0.077

2019/05/13 01:03:46.000 43.764 1.184 -0.053

2019/05/13 01:07:58.000 42.163 1.087 -0.028
2019/05/13 01:12:10.000 40.568 1.046 -0.003

74

NAVSTAR MEASUREMENTS WITH ADDED NOISE

Least-squares orbit determination

Measurements with added noise
Date UTC Az(deg) El(deg) Range rate (km/s)

2019/05/12 18:16:22.000 169.060 -11.407 0.716

2019/05/12 18:20:34.000 168.896 -9.676 0.715

2019/05/12 18:24:46.000 168.700 -7.957 0.714

2019/05/12 18:28:58.000 168.482 -6.268 0.712

2019/05/12 18:33:10.000 168.231 -4.608 0.708

2019/05/12 18:37:22.000 167.937 -2.980 0.703

2019/05/12 18:41:34.000 167.633 -1.360 0.698

2019/05/12 18:45:46.000 167.271 0.214 0.691

2019/05/12 18:49:58.000 166.908 1.771 0.683

2019/05/12 18:54:10.000 166.479 3.291 0.674

2019/05/12 18:58:22.000 166.030 4.800 0.665

2019/05/12 19:02:34.000 165.544 6.269 0.654

2019/05/12 19:06:46.000 165.018 7.714 0.643

2019/05/12 19:10:58.000 164.460 9.114 0.630

2019/05/12 19:15:10.000 163.856 10.499 0.617

2019/05/12 19:19:22.000 163.215 11.847 0.603

2019/05/12 19:23:34.000 162.536 13.171 0.588

2019/05/12 19:27:46.000 161.802 14.445 0.573

2019/05/12 19:31:58.000 161.049 15.700 0.557

2019/05/12 19:36:10.000 160.223 16.910 0.540

2019/05/12 19:40:22.000 159.382 18.079 0.522

2019/05/12 19:44:34.000 158.478 19.223 0.504

2019/05/12 19:48:46.000 157.538 20.325 0.485

2019/05/12 19:52:58.000 156.558 21.373 0.466

2019/05/12 19:57:10.000 155.532 22.397 0.446

2019/05/12 20:01:22.000 154.450 23.389 0.425

2019/05/12 20:05:34.000 153.331 24.313 0.405

2019/05/12 20:09:46.000 152.171 25.211 0.383

2019/05/12 20:13:58.000 150.953 26.046 0.362

2019/05/12 20:18:10.000 149.698 26.851 0.340

2019/05/12 20:22:22.000 148.403 27.602 0.318

2019/05/12 20:26:34.000 147.071 28.308 0.295

2019/05/12 20:30:46.000 145.681 28.951 0.273

2019/05/12 20:34:58.000 144.269 29.560 0.250

2019/05/12 20:39:10.000 142.812 30.110 0.227

2019/05/12 20:43:22.000 141.307 30.603 0.203

2019/05/12 20:47:34.000 139.786 31.051 0.180

2019/05/12 20:51:46.000 138.232 31.444 0.157

2019/05/12 20:55:58.000 136.642 31.783 0.133

2019/05/12 21:00:10.000 135.034 32.063 0.110

2019/05/12 21:04:22.000 133.397 32.285 0.087
2019/05/12 21:08:34.000 131.749 32.472 0.064

75

2019/05/12 21:12:46.000 130.075 32.579 0.041

2019/05/12 21:16:58.000 128.389 32.642 0.018

2019/05/12 21:21:10.000 126.692 32.660 -0.004

2019/05/12 21:25:22.000 124.991 32.620 -0.027

2019/05/12 21:29:34.000 123.281 32.512 -0.048

2019/05/12 21:33:46.000 121.571 32.364 -0.070

2019/05/12 21:37:58.000 119.851 32.185 -0.091

2019/05/12 21:42:10.000 118.148 31.920 -0.112

2019/05/12 21:46:22.000 116.450 31.621 -0.132

2019/05/12 21:50:34.000 114.756 31.281 -0.152

2019/05/12 21:54:46.000 113.068 30.890 -0.172

2019/05/12 21:58:58.000 111.395 30.455 -0.190

2019/05/12 22:03:10.000 109.738 29.983 -0.208

2019/05/12 22:07:22.000 108.082 29.467 -0.226

2019/05/12 22:11:34.000 106.448 28.928 -0.243

2019/05/12 22:15:46.000 104.833 28.321 -0.259

2019/05/12 22:19:58.000 103.221 27.708 -0.274

2019/05/12 22:24:10.000 101.630 27.054 -0.288

2019/05/12 22:28:22.000 100.056 26.377 -0.302

2019/05/12 22:32:34.000 98.496 25.654 -0.315

2019/05/12 22:36:46.000 96.953 24.917 -0.327

2019/05/12 22:40:58.000 95.418 24.170 -0.338

2019/05/12 22:45:10.000 93.897 23.386 -0.347

2019/05/12 22:49:22.000 92.388 22.580 -0.356

2019/05/12 22:53:34.000 90.894 21.756 -0.364

2019/05/12 22:57:46.000 89.412 20.935 -0.371

2019/05/12 23:01:58.000 87.919 20.089 -0.377

2019/05/12 23:06:10.000 86.435 19.228 -0.382

2019/05/12 23:10:22.000 84.979 18.370 -0.385

2019/05/12 23:14:34.000 83.502 17.511 -0.388

2019/05/12 23:18:46.000 82.038 16.645 -0.389

2019/05/12 23:22:58.000 80.583 15.772 -0.389

2019/05/12 23:27:10.000 79.125 14.903 -0.388

2019/05/12 23:31:22.000 77.657 14.050 -0.386

2019/05/12 23:35:34.000 76.197 13.193 -0.382

2019/05/12 23:39:46.000 74.735 12.347 -0.377

2019/05/12 23:43:58.000 73.255 11.512 -0.371

2019/05/12 23:48:10.000 71.780 10.681 -0.364

2019/05/12 23:52:22.000 70.291 9.881 -0.356

2019/05/12 23:56:34.000 68.802 9.108 -0.346

2019/05/13 00:00:46.000 67.303 8.336 -0.335

2019/05/13 00:04:58.000 65.785 7.609 -0.324

2019/05/13 00:09:10.000 64.268 6.891 -0.310

2019/05/13 00:13:22.000 62.737 6.212 -0.296

2019/05/13 00:17:34.000 61.203 5.560 -0.281

2019/05/13 00:21:46.000 59.646 4.947 -0.264
2019/05/13 00:25:58.000 58.092 4.369 -0.247

76

2019/05/13 00:30:10.000 56.527 3.843 -0.229

2019/05/13 00:34:22.000 54.953 3.327 -0.209

2019/05/13 00:38:34.000 53.361 2.870 -0.189

2019/05/13 00:42:46.000 51.768 2.478 -0.168

2019/05/13 00:46:58.000 50.184 2.123 -0.146

2019/05/13 00:51:10.000 48.571 1.806 -0.124

2019/05/13 00:55:22.000 46.969 1.549 -0.101

2019/05/13 00:59:34.000 45.373 1.334 -0.077

2019/05/13 01:03:46.000 43.752 1.183 -0.053

2019/05/13 01:07:58.000 42.157 1.081 -0.028
2019/05/13 01:12:10.000 40.565 1.039 -0.003

77

MOLNIYA 3-50 MEASUREMENTS FROM TRUTH ORBIT

Least-squares orbit determination

Measurements
Date UTC Az(deg) El(deg) Range rate (km/s)

2019/05/13 03:08:26.000 76.293 70.304 2.918

2019/05/13 03:14:26.000 69.776 70.121 2.825

2019/05/13 03:20:26.000 64.098 69.785 2.731

2019/05/13 03:26:26.000 59.166 69.351 2.638

2019/05/13 03:32:26.000 54.879 68.858 2.547

2019/05/13 03:38:26.000 51.142 68.331 2.458

2019/05/13 03:44:26.000 47.870 67.790 2.371

2019/05/13 03:50:26.000 44.993 67.245 2.286

2019/05/13 03:56:26.000 42.450 66.706 2.204

2019/05/13 04:02:26.000 40.192 66.177 2.123

2019/05/13 04:08:26.000 38.178 65.662 2.045

2019/05/13 04:14:26.000 36.374 65.164 1.968

2019/05/13 04:20:26.000 34.752 64.683 1.893

2019/05/13 04:26:26.000 33.289 64.220 1.820

2019/05/13 04:32:26.000 31.965 63.776 1.749

2019/05/13 04:38:26.000 30.765 63.351 1.679

2019/05/13 04:44:26.000 29.675 62.945 1.611

2019/05/13 04:50:26.000 28.682 62.557 1.544

2019/05/13 04:56:26.000 27.777 62.187 1.479

2019/05/13 05:02:26.000 26.951 61.835 1.414

2019/05/13 05:08:26.000 26.198 61.501 1.351

2019/05/13 05:14:26.000 25.509 61.183 1.289

2019/05/13 05:20:26.000 24.880 60.883 1.228

2019/05/13 05:26:26.000 24.306 60.599 1.167

2019/05/13 05:32:26.000 23.783 60.331 1.108

2019/05/13 05:38:26.000 23.306 60.079 1.049

2019/05/13 05:44:26.000 22.872 59.843 0.991

2019/05/13 05:50:26.000 22.478 59.622 0.934

2019/05/13 05:56:26.000 22.122 59.417 0.878

2019/05/13 06:02:26.000 21.801 59.226 0.822

2019/05/13 06:08:26.000 21.513 59.050 0.766

2019/05/13 06:14:26.000 21.256 58.889 0.711

2019/05/13 06:20:26.000 21.028 58.743 0.657

2019/05/13 06:26:26.000 20.827 58.611 0.603

2019/05/13 06:32:26.000 20.652 58.493 0.549

2019/05/13 06:38:26.000 20.503 58.389 0.496

2019/05/13 06:44:26.000 20.376 58.300 0.443

2019/05/13 06:50:26.000 20.273 58.225 0.390

2019/05/13 06:56:26.000 20.191 58.164 0.338

2019/05/13 07:02:26.000 20.129 58.117 0.285

2019/05/13 07:08:26.000 20.088 58.085 0.233
2019/05/13 07:14:26.000 20.066 58.066 0.181

78

2019/05/13 07:20:26.000 20.062 58.062 0.129

2019/05/13 07:26:26.000 20.077 58.072 0.077

2019/05/13 07:32:26.000 20.110 58.096 0.026

2019/05/13 07:38:26.000 20.159 58.134 -0.026

2019/05/13 07:44:26.000 20.226 58.187 -0.078

2019/05/13 07:50:26.000 20.310 58.255 -0.130

2019/05/13 07:56:26.000 20.410 58.337 -0.182

2019/05/13 08:02:26.000 20.528 58.433 -0.234

2019/05/13 08:08:26.000 20.661 58.545 -0.286

2019/05/13 08:14:26.000 20.812 58.672 -0.338

2019/05/13 08:20:26.000 20.980 58.814 -0.391

2019/05/13 08:26:26.000 21.165 58.972 -0.443

2019/05/13 08:32:26.000 21.368 59.145 -0.496

2019/05/13 08:38:26.000 21.589 59.334 -0.550

2019/05/13 08:44:26.000 21.830 59.539 -0.603

2019/05/13 08:50:26.000 22.090 59.760 -0.657

2019/05/13 08:56:26.000 22.372 59.998 -0.712

2019/05/13 09:02:26.000 22.676 60.253 -0.767

2019/05/13 09:08:26.000 23.003 60.525 -0.822

2019/05/13 09:14:26.000 23.357 60.815 -0.878

2019/05/13 09:20:26.000 23.737 61.122 -0.934

2019/05/13 09:26:26.000 24.147 61.448 -0.991

2019/05/13 09:32:26.000 24.590 61.793 -1.049

2019/05/13 09:38:26.000 25.069 62.156 -1.108

2019/05/13 09:44:26.000 25.588 62.540 -1.167

2019/05/13 09:50:26.000 26.151 62.943 -1.227

2019/05/13 09:56:26.000 26.763 63.366 -1.288

2019/05/13 10:02:26.000 27.431 63.811 -1.349

2019/05/13 10:08:26.000 28.161 64.276 -1.412

2019/05/13 10:14:26.000 28.963 64.764 -1.476

2019/05/13 10:20:26.000 29.848 65.273 -1.541

2019/05/13 10:26:26.000 30.826 65.804 -1.607

2019/05/13 10:32:26.000 31.915 66.357 -1.674

2019/05/13 10:38:26.000 33.130 66.931 -1.743

2019/05/13 10:44:26.000 34.495 67.527 -1.813

2019/05/13 10:50:26.000 36.035 68.142 -1.884

2019/05/13 10:56:26.000 37.783 68.774 -1.957

2019/05/13 11:02:26.000 39.780 69.421 -2.031

2019/05/13 11:08:26.000 42.072 70.076 -2.108

2019/05/13 11:14:26.000 44.718 70.733 -2.185

2019/05/13 11:20:26.000 47.788 71.380 -2.264

2019/05/13 11:26:26.000 51.364 72.002 -2.345

2019/05/13 11:32:26.000 55.537 72.576 -2.427

2019/05/13 11:38:26.000 60.399 73.070 -2.510

2019/05/13 11:44:26.000 66.030 73.439 -2.594

2019/05/13 11:50:26.000 72.467 73.625 -2.678
2019/05/13 11:56:26.000 79.669 73.553 -2.762

79

2019/05/13 12:02:26.000 87.480 73.134 -2.843

2019/05/13 12:08:26.000 95.617 72.266 -2.919

2019/05/13 12:14:26.000 103.715 70.846 -2.988

2019/05/13 12:20:26.000 111.410 68.764 -3.043

2019/05/13 12:26:26.000 118.423 65.903 -3.076

2019/05/13 12:32:26.000 124.598 62.122 -3.076

2019/05/13 12:38:26.000 129.894 57.236 -3.020

2019/05/13 12:44:26.000 134.343 50.999 -2.879

2019/05/13 12:50:26.000 138.018 43.094 -2.604

2019/05/13 12:56:26.000 140.997 33.164 -2.130
2019/05/13 13:02:26.000 143.350 20.932 -1.389

80

MOLNIYA 3-50 MEASUREMENTS WITH ADDED NOISE

Least-squares orbit determination

Measurements
Date UTC Az(deg) El(deg) Range rate (km/s)

2019/05/13 03:08:26.000 76.298 70.308 2.919

2019/05/13 03:14:26.000 69.778 70.118 2.833

2019/05/13 03:20:26.000 64.098 69.794 2.732

2019/05/13 03:26:26.000 59.170 69.344 2.635

2019/05/13 03:32:26.000 54.885 68.855 2.550

2019/05/13 03:38:26.000 51.140 68.331 2.452

2019/05/13 03:44:26.000 47.864 67.794 2.371

2019/05/13 03:50:26.000 44.989 67.241 2.291

2019/05/13 03:56:26.000 42.450 66.708 2.206

2019/05/13 04:02:26.000 40.196 66.179 2.116

2019/05/13 04:08:26.000 38.180 65.668 2.048

2019/05/13 04:14:26.000 36.362 65.162 1.966

2019/05/13 04:20:26.000 34.753 64.680 1.893

2019/05/13 04:26:26.000 33.297 64.224 1.822

2019/05/13 04:32:26.000 31.961 63.776 1.750

2019/05/13 04:38:26.000 30.762 63.350 1.681

2019/05/13 04:44:26.000 29.683 62.933 1.606

2019/05/13 04:50:26.000 28.688 62.560 1.543

2019/05/13 04:56:26.000 27.779 62.182 1.473

2019/05/13 05:02:26.000 26.953 61.843 1.418

2019/05/13 05:08:26.000 26.195 61.505 1.350

2019/05/13 05:14:26.000 25.505 61.181 1.286

2019/05/13 05:20:26.000 24.879 60.886 1.222

2019/05/13 05:26:26.000 24.308 60.605 1.168

2019/05/13 05:32:26.000 23.786 60.331 1.118

2019/05/13 05:38:26.000 23.310 60.070 1.049

2019/05/13 05:44:26.000 22.863 59.848 0.993

2019/05/13 05:50:26.000 22.482 59.627 0.943

2019/05/13 05:56:26.000 22.121 59.416 0.881

2019/05/13 06:02:26.000 21.806 59.221 0.819

2019/05/13 06:08:26.000 21.513 59.038 0.772

2019/05/13 06:14:26.000 21.251 58.895 0.707

2019/05/13 06:20:26.000 21.031 58.747 0.656

2019/05/13 06:26:26.000 20.830 58.610 0.606

2019/05/13 06:32:26.000 20.647 58.489 0.556

2019/05/13 06:38:26.000 20.500 58.391 0.488

2019/05/13 06:44:26.000 20.374 58.296 0.442

2019/05/13 06:50:26.000 20.278 58.230 0.396

2019/05/13 06:56:26.000 20.192 58.167 0.332

2019/05/13 07:02:26.000 20.127 58.124 0.290

2019/05/13 07:08:26.000 20.090 58.078 0.235
2019/05/13 07:14:26.000 20.068 58.064 0.183

81

2019/05/13 07:20:26.000 20.075 58.059 0.121

2019/05/13 07:26:26.000 20.064 58.068 0.074

2019/05/13 07:32:26.000 20.104 58.106 0.031

2019/05/13 07:38:26.000 20.163 58.136 -0.040

2019/05/13 07:44:26.000 20.235 58.187 -0.082

2019/05/13 07:50:26.000 20.300 58.255 -0.119

2019/05/13 07:56:26.000 20.412 58.341 -0.183

2019/05/13 08:02:26.000 20.533 58.426 -0.229

2019/05/13 08:08:26.000 20.664 58.544 -0.285

2019/05/13 08:14:26.000 20.820 58.672 -0.334

2019/05/13 08:20:26.000 20.973 58.820 -0.382

2019/05/13 08:26:26.000 21.162 58.966 -0.448

2019/05/13 08:32:26.000 21.371 59.141 -0.497

2019/05/13 08:38:26.000 21.582 59.339 -0.554

2019/05/13 08:44:26.000 21.834 59.542 -0.604

2019/05/13 08:50:26.000 22.092 59.758 -0.659

2019/05/13 08:56:26.000 22.378 59.998 -0.717

2019/05/13 09:02:26.000 22.684 60.248 -0.765

2019/05/13 09:08:26.000 22.999 60.523 -0.820

2019/05/13 09:14:26.000 23.362 60.813 -0.876

2019/05/13 09:20:26.000 23.736 61.122 -0.940

2019/05/13 09:26:26.000 24.147 61.455 -0.996

2019/05/13 09:32:26.000 24.584 61.800 -1.043

2019/05/13 09:38:26.000 25.073 62.149 -1.100

2019/05/13 09:44:26.000 25.585 62.533 -1.170

2019/05/13 09:50:26.000 26.152 62.946 -1.226

2019/05/13 09:56:26.000 26.761 63.375 -1.291

2019/05/13 10:02:26.000 27.431 63.807 -1.347

2019/05/13 10:08:26.000 28.152 64.280 -1.418

2019/05/13 10:14:26.000 28.963 64.758 -1.482

2019/05/13 10:20:26.000 29.838 65.268 -1.540

2019/05/13 10:26:26.000 30.829 65.811 -1.604

2019/05/13 10:32:26.000 31.904 66.352 -1.675

2019/05/13 10:38:26.000 33.117 66.930 -1.746

2019/05/13 10:44:26.000 34.496 67.530 -1.808

2019/05/13 10:50:26.000 36.034 68.141 -1.877

2019/05/13 10:56:26.000 37.793 68.772 -1.956

2019/05/13 11:02:26.000 39.775 69.421 -2.028

2019/05/13 11:08:26.000 42.069 70.077 -2.107

2019/05/13 11:14:26.000 44.715 70.730 -2.176

2019/05/13 11:20:26.000 47.783 71.378 -2.272

2019/05/13 11:26:26.000 51.364 72.004 -2.348

2019/05/13 11:32:26.000 55.539 72.573 -2.421

2019/05/13 11:38:26.000 60.399 73.074 -2.500

2019/05/13 11:44:26.000 66.032 73.446 -2.593

2019/05/13 11:50:26.000 72.465 73.620 -2.680
2019/05/13 11:56:26.000 79.675 73.557 -2.767

82

2019/05/13 12:02:26.000 87.479 73.127 -2.841

2019/05/13 12:08:26.000 95.622 72.262 -2.933

2019/05/13 12:14:26.000 103.718 70.862 -2.985

2019/05/13 12:20:26.000 111.411 68.766 -3.038

2019/05/13 12:26:26.000 118.433 65.911 -3.077

2019/05/13 12:32:26.000 124.598 62.123 -3.080

2019/05/13 12:38:26.000 129.899 57.237 -3.013

2019/05/13 12:44:26.000 134.342 51.007 -2.888

2019/05/13 12:50:26.000 138.027 43.086 -2.609

2019/05/13 12:56:26.000 140.997 33.157 -2.128
2019/05/13 13:02:26.000 143.353 20.938 -1.391

83

MOLNIYA 3-50 MEASUREMENTS FROM ESTIMATED ORBIT

Least-squares orbit determination

Measurements
Date UTC Az(deg) El(deg) Range rate (km/s)

2019/05/13 03:08:26.000 76.226 70.299 2.915

2019/05/13 03:14:26.000 69.714 70.115 2.822

2019/05/13 03:20:26.000 64.041 69.777 2.728

2019/05/13 03:26:26.000 59.113 69.342 2.635

2019/05/13 03:32:26.000 54.829 68.847 2.544

2019/05/13 03:38:26.000 51.095 68.319 2.455

2019/05/13 03:44:26.000 47.827 67.776 2.367

2019/05/13 03:50:26.000 44.952 67.231 2.282

2019/05/13 03:56:26.000 42.412 66.690 2.200

2019/05/13 04:02:26.000 40.156 66.160 2.119

2019/05/13 04:08:26.000 38.144 65.644 2.040

2019/05/13 04:14:26.000 36.342 65.144 1.964

2019/05/13 04:20:26.000 34.723 64.662 1.889

2019/05/13 04:26:26.000 33.262 64.198 1.816

2019/05/13 04:32:26.000 31.941 63.753 1.744

2019/05/13 04:38:26.000 30.743 63.327 1.674

2019/05/13 04:44:26.000 29.655 62.919 1.606

2019/05/13 04:50:26.000 28.665 62.530 1.539

2019/05/13 04:56:26.000 27.762 62.159 1.473

2019/05/13 05:02:26.000 26.939 61.805 1.409

2019/05/13 05:08:26.000 26.188 61.470 1.346

2019/05/13 05:14:26.000 25.502 61.151 1.283

2019/05/13 05:20:26.000 24.876 60.849 1.222

2019/05/13 05:26:26.000 24.305 60.564 1.162

2019/05/13 05:32:26.000 23.784 60.295 1.102

2019/05/13 05:38:26.000 23.310 60.042 1.043

2019/05/13 05:44:26.000 22.880 59.804 0.985

2019/05/13 05:50:26.000 22.490 59.582 0.928

2019/05/13 05:56:26.000 22.137 59.375 0.871

2019/05/13 06:02:26.000 21.820 59.183 0.815

2019/05/13 06:08:26.000 21.535 59.006 0.760

2019/05/13 06:14:26.000 21.282 58.844 0.705

2019/05/13 06:20:26.000 21.057 58.696 0.650

2019/05/13 06:26:26.000 20.861 58.563 0.596

2019/05/13 06:32:26.000 20.691 58.444 0.542

2019/05/13 06:38:26.000 20.546 58.339 0.488

2019/05/13 06:44:26.000 20.424 58.249 0.435

2019/05/13 06:50:26.000 20.325 58.172 0.382

2019/05/13 06:56:26.000 20.248 58.110 0.330

2019/05/13 07:02:26.000 20.192 58.063 0.277

2019/05/13 07:08:26.000 20.156 58.029 0.225
2019/05/13 07:14:26.000 20.140 58.009 0.173

84

2019/05/13 07:20:26.000 20.143 58.004 0.121

2019/05/13 07:26:26.000 20.164 58.013 0.068

2019/05/13 07:32:26.000 20.203 58.036 0.016

2019/05/13 07:38:26.000 20.259 58.074 -0.035

2019/05/13 07:44:26.000 20.333 58.126 -0.087

2019/05/13 07:50:26.000 20.425 58.193 -0.140

2019/05/13 07:56:26.000 20.533 58.274 -0.192

2019/05/13 08:02:26.000 20.659 58.371 -0.244

2019/05/13 08:08:26.000 20.801 58.482 -0.296

2019/05/13 08:14:26.000 20.961 58.608 -0.349

2019/05/13 08:20:26.000 21.138 58.750 -0.402

2019/05/13 08:26:26.000 21.334 58.907 -0.455

2019/05/13 08:32:26.000 21.548 59.080 -0.508

2019/05/13 08:38:26.000 21.781 59.268 -0.562

2019/05/13 08:44:26.000 22.033 59.473 -0.616

2019/05/13 08:50:26.000 22.307 59.694 -0.670

2019/05/13 08:56:26.000 22.602 59.932 -0.725

2019/05/13 09:02:26.000 22.921 60.187 -0.780

2019/05/13 09:08:26.000 23.264 60.459 -0.836

2019/05/13 09:14:26.000 23.634 60.749 -0.892

2019/05/13 09:20:26.000 24.032 61.056 -0.949

2019/05/13 09:26:26.000 24.462 61.382 -1.006

2019/05/13 09:32:26.000 24.926 61.727 -1.064

2019/05/13 09:38:26.000 25.427 62.091 -1.123

2019/05/13 09:44:26.000 25.970 62.474 -1.183

2019/05/13 09:50:26.000 26.560 62.877 -1.243

2019/05/13 09:56:26.000 27.201 63.301 -1.305

2019/05/13 10:02:26.000 27.900 63.745 -1.367

2019/05/13 10:08:26.000 28.666 64.210 -1.430

2019/05/13 10:14:26.000 29.507 64.697 -1.494

2019/05/13 10:20:26.000 30.434 65.205 -1.560

2019/05/13 10:26:26.000 31.461 65.735 -1.627

2019/05/13 10:32:26.000 32.602 66.285 -1.694

2019/05/13 10:38:26.000 33.877 66.857 -1.764

2019/05/13 10:44:26.000 35.309 67.449 -1.834

2019/05/13 10:50:26.000 36.925 68.058 -1.907

2019/05/13 10:56:26.000 38.759 68.683 -1.980

2019/05/13 11:02:26.000 40.852 69.320 -2.055

2019/05/13 11:08:26.000 43.254 69.962 -2.132

2019/05/13 11:14:26.000 46.025 70.601 -2.210

2019/05/13 11:20:26.000 49.233 71.225 -2.290

2019/05/13 11:26:26.000 52.962 71.815 -2.372

2019/05/13 11:32:26.000 57.296 72.346 -2.455

2019/05/13 11:38:26.000 62.321 72.783 -2.538

2019/05/13 11:44:26.000 68.100 73.078 -2.623

2019/05/13 11:50:26.000 74.648 73.169 -2.707
2019/05/13 11:56:26.000 81.895 72.977 -2.789

85

2019/05/13 12:02:26.000 89.657 72.411 -2.869

2019/05/13 12:08:26.000 97.644 71.368 -2.943

2019/05/13 12:14:26.000 105.503 69.741 -3.008

2019/05/13 12:20:26.000 112.906 67.418 -3.056

2019/05/13 12:26:26.000 119.615 64.270 -3.079

2019/05/13 12:32:26.000 125.506 60.140 -3.061

2019/05/13 12:38:26.000 130.554 54.821 -2.979

2019/05/13 12:44:26.000 134.797 48.038 -2.794

2019/05/13 12:50:26.000 138.303 39.454 -2.455

2019/05/13 12:56:26.000 141.144 28.721 -1.890
2019/05/13 13:02:26.000 143.382 15.644 -1.039

86

APPENDIX B. SIMULATION RESULTS

ISS RANGE RATE ONLY

87

ISS ANGLES ONLY

88

ISS RANGE RATE AND ANGLES

89

NAVSTAR RANGE RATE ONLY

90

NAVSTAR ANGLES ONLY

91

NAVSTAR RANGE RATE AND ANGLES

92

MOLNIYA RANGE RATE ONLY

93

MOLNIYA ANGLES ONLY

94

MOLNIYA RANGE RATE AND ANGLES

95

APPENDIX C. RESULTS FROM PREVIOUS BUILD OF LMF

ISS using 10 observations of range rate

96

ISS using 10 observations using range rate, Azimuth and elevation

97

ISS using 20 observations with range rate only

98

ISS using 20 observations of range rate, azimuth and elevation

99

ISS using 40 observations using range rate only

100

ISS using 40 observations of range rate, azimuth and elevation

101

NAVSTAR-77 using 10 observations of range rate only

102

NAVSTAR-77 using 10 observations of range rate, azimuth and elevation

103

NAVSTAR-77 using 20 observations of range rate only

104

NAVSTAR-77 using 20 observations of range rate, azimuth and elevation

105

NAVSTAR-77 using 40 observations of range rate only

106

NAVSTAR-77 using 40 observations of range rate, azimuth and elevation

107

MOLNIYA 3-50 using 10 observations of range rate

108

MOLNIYA -3-50 using 10 observation of range rate, azimuth and elevation

109

MOLNIYA -3-50 using 20 observation of range rate

110

MOLNIYA -3-50 using 20 observation of range rate, azimuth and elevation

111

MOLNIYA -3-50 using 40 observation of range rate

112

MOLNIYA -3-50 using 40 observation of range rate, azimuth and elevation

113

% Range rate standard deviation = 5;

% Noise standard deviation [Az = 0.005*pi/180;

% [1] ISS [2] NAVSTAR [3] MOLNIYA
% number of observations
% Time between observations [s]

% Determines which parameter set

= 2;
= 100;
= 252;
= 2;

chooseSat
n_obs
step
choice
to run
sig1
El]
sig2

% Satellite options

APPENDIX D. MATLAB CODE

TEST PROGRAM

Least Squares Orbit Determination
The following program uses a least squares algorithm to predict an orbit with erroneous

data. This program simulates measurements using an orbit propagated using data

recovered from Gpredict software. Specifically, a file containing the date, time, right-

ascension, and declination is used, along with Gauss's method for retrieving a state vector,

is used to produce the "measurements."

Goal: Minimize

1) SATELLITE AND PROPAGATOR OPTIONS:

The user has the choice for which observed parameters they want to use. The cases are

as follows:

Choice 1. Range-rate only

Choice 2. Range-rate, azimuth, elevation

Choice 3. Angles only (Azimuth & Elevation)

2) MARQUARDT FILTER OPTIONS:

clc; clear
format long g
randn('seed',0)
tic
global PC AuxParam Cnm Snm eopdata const ...

constants
get_eopdata

% Perturbation value (used for
% marquardt options
options.bdx = 25e-5;

114

3) LOAD SATELLITE DATA AND CALCULATE INITIAL ESTIMATE STATE VECTOR

There are currently three satellites to choose from. Should the user desire studying an

alternative satellite, enter the name of the satellite as done below. Note that each name

has 24 characters including spaces. Consult Celestrak for lists of satellites and TLEs.

From here, it is possible to calculate the position of the satellite using Two-Line Element

(TLE) data. TLE data from all active satellites is read from Celestrak and stored in the file

TLE_DATA.txt. This text file is scanned for the relevant satellite, then the TLE of that

satellite is stored in the file new_tle.txt. The state vector is calculated using sgp4.m.

In the TLE, epoch is represented in days (with fraction of day) since Jan. 1 of the current

year. To get time since epoch for an event, first days since Jan. 1 of the event is

calculated, then epoch is subtracted from that value. The function sgp4.m is used to extract

the state vector from the TLE at the event time.

options.incr = 10; % Factor for increasing lambda
options.decr = 0.4; % Factor for decreasing lambda
options.maxIter= 29; % Maximum amount of iterations
options.eps1 = 1e-4; % Gradient convergence Criteria
options.eps2 = 1e-8; % Parameter convergence criteria
options.eps3 = 1e-6; % RMS criterion
options.eps4 = 1e-20; % Acceptence criteria
if choice == 1 || choice == 3

options.wts = 1/sig1^2;
elseif choice == 2

options.wts = [];
for i = 1:n_obs

options.wts = [options.wts;1/sig1^2;1/sig1^2;1/sig2^2];
end

end

% Starting point for Marq.
Jacobian)
options.lambda = 0.0001;
parameter

';

';
% ISS downlink freq ft = 145.8*1e6;

satellite = 'ISS (ZARYA)
get_tle(satellite);
passTime1 = [2019 5 12 5 36 24];

elseif chooseSat == 2
ft = 1575.42*1e6;
satellite = 'NAVSTAR 77 (USA 289)
get_tle(satellite);
passTime1 = [2019 5 12 18 45 46];

% Enter Satellite Event Time (UT):
% passTime = [year month day hour minute second]
if chooseSat == 1

http://www.celestrak.com/NORAD/elements/active.txt
http://www.celestrak.com/NORAD/elements/active.txt

115

4) SIMULATE GROUND STATION

Constructing the position of the ground site can be done using Eqn. (5.86) in the Curtis

book. For the purposes of this experiment, the latitude, longitude, and altitude of San Jose

State University are used for this construction.

5) READ IN EARTH GRAVITY FIELD COEFFICIENTS AND MODEL PARAMETERS

sat.minute1 = passTime1(5);
sat.second1 = passTime1(6);

sat.UT = sat.hour1 + sat.minute1./60 + sat.second1./(60*60);
sat.MJD0 = Mjday(sat.year1, sat.month1, sat.day1, sat.hour1, sat.minute1,
sat.second1);
ndays = days_past_Jan1(sat.year1, sat.month1, sat.day1, sat.hour1,
sat.minute1, sat.second1);
[r0, v0] = sgp4(ndays); % [km km/s]
% Epoch state "truth"
Y0_ref = [r0*1e3 v0*1e3] ; % [[m] [m/s]]

= passTime1(1);
= passTime1(2);
= passTime1(3);
= passTime1(4);

% Pass 1
end
sat.year1
sat.month1
sat.day1
sat.hour1

'; satellite = 'MOLNIYA 3-50
Molniya_tle(satellite);
passTime1 = [2019 5 13 3 2 26];

else

% East longitude [deg]:
degrees = -121;
minutes = 52;
seconds = 31.19;
% convert negative (west) longitude to east longitude:
if degrees < 0

degrees = degrees + 360;
end
% Express the longitudes as decimal numbers:
sat.EL = degrees + minutes/60 + seconds/3600;

[km]
[rad] Latitude %

% Altitude = .025;
= 37.3352*pi/180;

sat.alt
sat.phi

% File for planetary and lunar ephemerides
load DE430Coeff.mat
PC = DE430Coeff;
% File for Earth gravity field
load GGM03S.txt
%% read Earth gravity field coefficients

116

6) READ IN EARTH ORIENTATION PARAMETERS:

In this section, the program reads Earth Orientation Parameters (EOPs) from Celestrak.

Because Celestrak constantly update the EOPs, downloadilng the code directly through

the code will facilitate future uses of the program. In the case that the user is not connected

to the internet, a downloaded set of EOP data can be used.

Read Earth Orientation Parameters

Cnm = zeros(181,181);
Snm = zeros(181,181);
fid = fopen('GGM03S.txt','r');
for n=0:180

for m=0:n
temp = fscanf(fid,'%d %d %f %f %f %f',[6 1]);
Cnm(n+1,m+1) = temp(3);
Snm(n+1,m+1) = temp(4);

end
end
fclose(fid);
% model parameters
AuxParam = struct
('Mjd_UTC',0,'area_solar',0,'area_drag',0,'mass',0,'Cr',0,...

'Cd',0,'n',0,'m',0,'sun',0,'moon',0,'sRad',0,'drag',0,...

'planets',0,'SolidEarthTides',0,'OceanTides',0,...
'Relativity',0,'n_a',0,'m_a',0,'n_G',0,'m_G',0);

% [kg] = 2000;
= 1.0;
= 2.0;
= 10;
= 10;
= 10;
= 10;
= 10;
= 10;

= 10*2; % [m^2] AuxParam.area_drag
AuxParam.mass
AuxParam.Cr
AuxParam.Cd
AuxParam.n
AuxParam.m
AuxParam.n_a
AuxParam.m_a
AuxParam.n_G
AuxParam.m_G

AuxParam.Mjd_UTC = sat.MJD0;
AuxParam.area_solar = 10*2; % [m^2]

% Used for printing of results ['x','y','z']; Label =
%%

eopdata;

fid = fopen('eopdata.txt','r');
eopdata = fscanf(fid,'%i %d %d %i %f %f %f %f %f %f %f %f %f',[13 inf]);
fclose(fid);

http://celestrak.com/SpaceData/eop20130101.txt

117

Evaluate model using Y0 %

end
for i = 1:length(t)

Obs(i,:) = get_obs(Y0_ref,t(i),sat,1);
end
% [Obs,rr] = get_obs(Y0_ref,MJD0,sat,step);

elseif sat.choice == 3
fprintf(' Date UTC Az(deg) El(deg)\n');

Az(deg) El(deg) Range UTC Date fprintf('
rate (km/s)\n');

% generation of artificial observations from given epoch state
sat.n_obs = n_obs;
sat.choice = choice;
sat.sig1 = sig1;
sat.sig2 = sig2;
for i = 1:n_obs

t(i) = i*step;
end
t = t(:);
fprintf('Least-squares orbit determination\n\n');

fprintf('Measurements \n\n');
if sat.choice == 1

fprintf(' Date UTC Range rate (km/s)\n');
elseif sat.choice == 2

8) BEGIN LEAST SQUARES ALGORITHM

Beginning the least squares algorithm:

9) SIMULATE PARAMETERS FROM "PREDICTED" ORBIT

Range rate is calculated using

where

 is the range vector in the ECI frame

AuxParam.SolidEarthTides = 1;
AuxParam.OceanTides = 0;
AuxParam.Relativity = 0;

= 1;
= 1;
= 0;
= 0;
= 0;

AuxParam.sun
AuxParam.moon
AuxParam.sRad
AuxParam.drag
AuxParam.planets

118

 is the time derivative of

 ρ is the magnitude of .

Right-ascension α and declination δ are found using (Curtis, 2014)

if

.

Azimuth A and Elevation a are found using Curtis...

Now the discovered quantities are recorded in the observation Obs matrix

Plotting:

This code can output 3 plots. The data for the first plot, which plots the predicted and

estimated orbits together, should be extracted from the orbit propagator found in the

present code. This method is meant to show how the estimated orbit evolves over the

course of the least-squares interation. This first plot shows only preliminary orbit. With

added orbital perturbations, the second and third plot show the orbit in both the Earth-

Centered, Earth-Fixed (ECEF) reference frame and the Earth-Centered Inertial (ECI)

frame.

Transformation of simulated range-rate to Doppler shift

To generate the desired "waterfall" plots for Doppler shift, the simulated range-rate

measurements need to be transformed into frequency shift measurements. This can be

done through modification of the range-rate formula

where c is the speed of light, is the percieved frequency at the ground site reciever, and

is the nominal transmitted frequency. First the Doppler shift equation is solved for

% Step = 60;
% N_Step = 420;
%
% [Eph, Eph_ecef] = Workspace_OrbitGen(Step,N_Step, Y0_ref, sat.MJD0);

119

,

which is plugged into the equation:

.

This equation can now be solved for

Orbit determination:

The Collector function is used to extract the Jacobian J, vector of residuals f, and the sum

of squares of the residuals SSx. The variable SSx represents S(x) the sum of squares

using the previous initial state, while SSxq represents the sum of squares of residuals for

the state with the added correction S(x+q). Inputs to Collector are the inital state vector

and the position vector of the ground site. The Collector subfunction can be found towards

the end of this code.

Marquardt's method for least squares:

(1)

where

Range-rate(km/s)\n');
Dec(deg) RA(deg) UTC Date

% Label for residual

fprintf('

% Constants used in

rUp =Y0(1:3) + 6e3;
rLow = Y0(1:3)-6e3;
vUp = Y0(4:6)+2;
vLow = Y0(4:6)-2;
upb = [r0+.01 v0+0.00001];
lobs = [r0-.01 v0-0.00001];
options.bnds = [lobs*1e3 upb*1e3];
c = [sat];
marquardt

fprintf('\nResiduals: \n\n');
table

Y0_apr = Y0_ref' + [-5e3,-3e3,4e3,-1.6,1,-2.5]'; % Orbit from noisy data
Y0 = Y0_apr; % A priori state vector

120

 λ : The Marquardt parameter to determine magnitude and direction of step

 f : Vector of residuals

 : Change to state.

Because we desire to fit our measurements to the estimated orbit, Eq. 1 is solved for

= .

At each iteration, the sum of squares for the previous step S(x) and the current step S(x+q)

are compared. If

the Marquardt parameter λ is increased by a factor of 10 and the previous corrections are

reversed. If

λ is decreased by a factor of 0.4 for the next iteration (Nash, 1990).

 Y0 = marquardt('get_obs',Y0,Obs,step,options,c)

Printout of Summary:

This section will print out the results of the program. The predicted vector was the initial

orbit constructed from Gpredict data. The estimated state was the vector used to simulate

data. The correction column shows corrections made to the estimated state vector. The

last column of this data gives the "best estimate" of the orbiting body's initial state vector.

Finally, the Root Mean Square (RMS) error is shown.

fprintf('%s',Label(i),'[km]');
fprintf('%11.1f %11.1f %14.1f %11.1f',Y0_ref(i)/1e3, Y0_apr(i)/1e3

...
,(Y0(i)-Y0_apr(i))/1e3, Y0(i)/1e3);

fprintf('\n');
end
for i=4:6

fprintf('v%s',Label(i-3),'[km/s]');
fprintf('%11.4f %11.4f %14.4f %11.4f',Y0_ref(i)/1e3, Y0_apr(i)/1e3,

...

\n'); final estimated correction truth fprintf('
for i=1:3

fprintf('\nSummary: \n');

,

121

(Y0(i)-Y0_apr(i)),Y0(i)/1e3);
fprintf('\n');

end

toc

122

ORBIT AND DATA GENERATION PROGRAM

function [Data, rr] = get_obs(Y0,t,sat,print)

global AuxParam

We = 72.9217e-6; % angular vel. of Earth in

ECI..[rad/s]

deg = pi/180;

Ob = 1/298.26; % Earth's flattening

factor

Re = physconst('EarthRadius')/1000; % Radius of the

earth...........[km]

% Tolerances for orbit propagation

options = rdpset('RelTol',1e-13,'AbsTol',1e-16);

% Build components of the site position vector:

sat.fac1 = Re/sqrt(1 - (2*Ob - Ob*Ob)*sin(sat.phi)^2);

sat.fac2 = ((Re*(1 - Ob)^2)/sqrt(1 - (2*Ob -

Ob*Ob)*sin(sat.phi)^2) + sat.alt)*sin(sat.phi);

MJD_UTC = sat.MJD0 + t/86400; % Modified Julian Date

% Time increment and propagation

AuxParam.Mjd_UTC = MJD_UTC;

[~,yout] = radau(@Accel,[0 t],Y0,options); % State vector

Y = yout(end,:)';

% Get local sidereal time. Pass 1 data used but t

compensates.

lst = LST(sat.year1, sat.month1, sat.day1, sat.UT+t/3600,

sat.EL);

lst = lst*deg; % [rad]

% Coordinate Transformation Matrix

Q = geocentric2topocentric(sat.phi, lst);

% Ground site position vector [m](rotating)[Eq. (5.56)]:

Rs(1) = (sat.fac1 + sat.alt)*cos(sat.phi)*cos(lst);

Rs(2) = (sat.fac1 + sat.alt)*cos(sat.phi)*sin(lst);

Rs(3) = sat.fac2;

Rs = Rs*1000;

r = Y(1:3);

123

v = Y(4:6);

Vs = cross([0 0 We],Rs); % Derivative of Rs

s = Q*(r-Rs');

s_dt = Q*(v - Vs');

%Observations

[Az, El] = AzEl(s); % [rad]

range_rate = dot(s,s_dt)/norm(s);

rr = range_rate;

% Observation record

MJD = MJD_UTC;

if sat.choice == 1

% Data = range_rate;

Data = range_rate + sat.sig2;

elseif sat.choice == 2

% Data = [Az El range_rate];

% [rad]

Data = [Az+sat.sig1*randn El+sat.sig1*randn

range_rate+sat.sig2*randn];

elseif sat.choice == 3

Data = [Az+sat.sig1*randn El+sat.sig1*randn] ; %

[rad]

% Data = [Az El]; %

[rad]

end

% for printing of results

if print == 1

[year,mon,day,hr,minute,second] =

invjday(MJD_UTC+2400000.5);

if sat.choice == 1

fprintf(' %4d/%2.2d/%2.2d %2.2d:%2.2d:%6.3f

%10.3f\n', ...

year,mon,day,hr,minute,second, Data/1000);

elseif sat.choice == 2

fprintf(' %4d/%2.2d/%2.2d %2.2d:%2.2d:%6.3f

%10.3f%10.3f %10.3f\n', ...

year,mon,day,hr,minute,second,

Data(1)*180/pi,Data(2)*180/pi,Data(3)/1000);

elseif sat.choice == 3

fprintf(' %4d/%2.2d/%2.2d %2.2d:%2.2d:%6.3f

%10.3f%10.3f \n', ...

year,mon,day,hr,minute,second,

124

Data(1)*180/pi,Data(2)*180/pi);

end

end

end % for i = 1:n_obs

125

LEVENBERG-MARQUARDT FILTER

function Y0 = marquardt(func,Y0,Obs,step,options,c)

% func = 'get_obs'

global iterat

lx = numel(Y0); % number of states

[nPnt,nP] = size(Obs); % number of observations or

observations sets

nParam = nP; % number of observables per set

Y0_prev = zeros(lx,1); % previous parameter set

data_prev = zeros(nPnt*nParam,1); % previous data set

SSx = 1e-3/eps; % initialize sum of squares

SSx_prev = 1e-3/eps; % initialize previous sum of squares

J = zeros(nPnt,lx); % initialize the Jacobian matrix

Dof = nPnt - lx + 1; % statistical degrees of freedom

stop = 0; % initialize termination flag

iterat = 0; % initialize iteration count

bdx = options.bdx; % Jacobian perturbation

lambda = options.lambda ; % Starting Marquardt parameter

YLow = options.bnds(1:6)';

YUp = options.bnds(7:12)';

wts = options.wts;

for i = 1:nPnt

t(i) = i*step;

end

% options are stored in struct

idx = find(bdx ~= 0); % indices of the parameters

to be fit

Nfit = length(idx); % number of parameters to

fit

if length(bdx) == 1

bdx = bdx*ones(lx,1); % perturbation for Jacobian

calculation

end

126

for i = 1:length(t)

data_init(i,:) = feval(func,Y0,t(i),c,0); % Evaluate model

using Y0

end

% data_init = [];

% for i = 1:length(t)

% y_init = feval(func,Y0,Obs(i,1),t(i),c); % initialize residual

vector from estimated state

% data_init = [data_init;y_init];

% end

if (var(wts) == 0)

weight = abs(wts)*ones(nPnt*nParam,1);

disp('Uniform weights used in analysis')

else

end

weight = abs(wts(:));

% Initialize Jacobian

[A,g,SSx,dataVec,J] =

get_Ag(func,t,Y0_prev,data_prev,1,J,Y0,Obs,weight,bdx,c);

% Added for Chol Decomp

% D = diag(A);

% d = diag(A);

% UA = triu(A,1);

% A = UA' + UA + diag(d+1*D);

% [U,p] = chol(A);

% dq = U\(U'\g);

% End of Added chol stuff (dq comes out same as q - don't use)

if (max(abs(g)) < options.eps1)

fprintf(' Initial Estimate is Close to Convergence')

stop = 1;

end

SSx_prev = SSx;

history = ones(options.maxIter,lx+3); % Initialize

convergence history

Obs_vec = [];

127

for i = 1:nPnt

for k = 1:nParam

Obs_vec = [Obs_vec;Obs(i,k)];

end

end

% Start least squares

while (~stop && iterat <= options.maxIter)

iterat = iterat + 1;

fprintf('iteratation = %f\n',iterat)

q = (A + lambda*diag(diag(A))+1) \ g; % Marquardt correction

to state

% q = inv(A)*g

% q=-q

% check the effect of q

Ytry = Y0 + q(idx); % Update change fitting

parameters

Ytry = min(max(YLow,Ytry),YUp); % apply constraints

% y_try = []; % data calculation from Ytry

% for i = 1:nPnt

% data_try = feval(func,Ytry,Obs(i,1),t(i),c);

% y_try = [y_try; data_try'];

% end

for i = 1:length(t)

data_try(i,:) = feval(func,Ytry,t(i),c,0); % Evaluate model

using Y0

% y_try(3*i-2:3*i) = data_try(i,1:3)';

end

y_try = [];

for i = 1:nPnt

for j = 1:nP

y_try = [y_try;data_try(i,j)]; % vectorized data set

from

end

end % data_try matrix

% if nP == 1

% y_try = data_try(:);

% else

% y_try=y_try(:);

128

% end

% y_try = y_try';

f_res = Obs_vec - y_try; % residual error using Ytry

if ~all(isfinite(f_res))

stop = 1;

break

end

SSx_try = f_res' * (f_res.*weight); % sum of squares error

criteria

%beta = SSx - SSx_try

beta = (SSx - SSx_try) / (q' * (lambda * q + g));

if beta > 0%options.eps4 % Ytry is accepted

dSSx = SSx - SSx_prev;

SSx_prev = SSx;

Y0_prev = Y0;

data_prev = dataVec;

Y0 = Ytry(:);

[A,g,SSx,dataVec,J] =

get_Ag(func,t,Y0_prev,data_prev,dSSx,J,Y0,Obs,weight,bdx,c);

% Decrease lambda ==> Gauss-Newton Method

lambda = max(lambda*options.decr,1e-7);

else % Ytry not accepted

SSx = SSx_prev;

if (~rem(iterat,lx)) % rank-1 Jacobian update

[A,g,dSSx,dataVec,J] = get_Ag(func,t,Y0_prev,data_prev,-

1,J,Y0,Obs,weight,bdx,c);

end

% increase lambda ==> gradient descent method

lambda = min(lambda*options.incr,1.e7);

end

129

if (max(abs(g)) < options.eps1 && iterat > 2)

fprintf('eps1');

stop = 1;

end

if (max(abs(q)./(abs(Y0)+1e-6)) < options.eps2 && iterat > 2)

fprintf('eps2');

stop = 1;

end

if (SSx/Dof < options.eps3 && iterat > 2)

fprintf('eps3');

stop = 1;

end

if (iterat == options.maxIter)

stop = 1;

end

end % main loop

function J = Jacobian(func,t,Y0,Obs,data,bdx,c)

% Function to calculate the Jacobian matrix

[m,w] = size(Obs);

n = length(Y0);

% Jacobian

J = []; % Initialize Jacobian

for i = 1:m

yDat = []; % initialize/reset vector of

data from perturbed run

for jj = 1:w

yDat = [yDat;data(i,jj)']; % (3x1) vector of data at

time t

dx

state k

end

for k = 1:n

dx = bdx(k); % basic step

xd = Y0; % save state

xd(k) = xd(k)+dx; % perturb

Jdat = feval(func,xd,t(i),c,0)'; % calculate data at t

from perturbed state vector

Jj(1:w,k) = (Jdat-yDat)/dx; % collect

Jacobian elements at time t

130

end

J = [J;Jj]; % collect

Jacobian elements for ti to tf

end

end

function J = Broyden_J(Y0_prev,data_prev,J,Y0,data)

q = Y0 - Y0_prev;

J = J + (data - data_prev - J*q)*q' / (q'*q); % Broyden rank-1

update

end

function [A,g,SSx,dataVec,J] =

get_Ag(func,t,Y0_prev,data_prev,dSSx,J,Y0,Obs,weight,bdx,c)

[m,n] = size(Obs); % get dimensions of observations

matrix

lx = length(Y0); % number of elements in state

vector

yObs = [];

for i = 1:m

for j = 1:n

yObs = [yObs;Obs(i,j)]; % vectorized data set from obs

matrix

end

end

for i = 1:length(t)

data(i,:) = feval(func,Y0,t(i),c,0); % Evaluate model using

Y0

dataVec(n*i-n+1:n*i) = data(i,:);

end

dataVec = dataVec(:);

if (~rem(iterat,lx) || dSSx > 0)

J = Jacobian(func,t,Y0,Obs,data,bdx,c); % finite-

131

difference

else

J = Broyden_J(Y0_prev,data_prev,J,Y0,dataVec); % rank-1

update

end

f_r = yObs - dataVec; % vector of residuals

SSx = f_r'* (f_r.*weight); % SSx error criteria

A = J'* (J .* (weight * ones(1,lx)));

g = J' * (weight .* f_r);

end %get_Ag

%%

end % marquardt

